Spaces:
Runtime error
Runtime error
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) | |
# | |
# See LICENSE for clarification regarding multiple authors | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
from functools import lru_cache | |
from typing import Union | |
import torch | |
import torchaudio | |
from huggingface_hub import hf_hub_download | |
os.system( | |
"cp -v /home/user/.local/lib/python3.8/site-packages/k2/lib/*.so /home/user/.local/lib/python3.8/site-packages/sherpa/lib/" | |
) | |
import k2 # noqa | |
import sherpa | |
import sherpa_onnx | |
import numpy as np | |
from typing import Tuple | |
import wave | |
sample_rate = 16000 | |
def read_wave(wave_filename: str) -> Tuple[np.ndarray, int]: | |
""" | |
Args: | |
wave_filename: | |
Path to a wave file. It should be single channel and each sample should | |
be 16-bit. Its sample rate does not need to be 16kHz. | |
Returns: | |
Return a tuple containing: | |
- A 1-D array of dtype np.float32 containing the samples, which are | |
normalized to the range [-1, 1]. | |
- sample rate of the wave file | |
""" | |
with wave.open(wave_filename) as f: | |
assert f.getnchannels() == 1, f.getnchannels() | |
assert f.getsampwidth() == 2, f.getsampwidth() # it is in bytes | |
num_samples = f.getnframes() | |
samples = f.readframes(num_samples) | |
samples_int16 = np.frombuffer(samples, dtype=np.int16) | |
samples_float32 = samples_int16.astype(np.float32) | |
samples_float32 = samples_float32 / 32768 | |
return samples_float32, f.getframerate() | |
def decode_offline_recognizer( | |
recognizer: sherpa.OfflineRecognizer, | |
filename: str, | |
) -> str: | |
s = recognizer.create_stream() | |
s.accept_wave_file(filename) | |
recognizer.decode_stream(s) | |
text = s.result.text.strip() | |
return text.lower() | |
def decode_online_recognizer( | |
recognizer: sherpa.OnlineRecognizer, | |
filename: str, | |
) -> str: | |
samples, actual_sample_rate = torchaudio.load(filename) | |
assert sample_rate == actual_sample_rate, ( | |
sample_rate, | |
actual_sample_rate, | |
) | |
samples = samples[0].contiguous() | |
s = recognizer.create_stream() | |
tail_padding = torch.zeros(int(sample_rate * 0.3), dtype=torch.float32) | |
s.accept_waveform(sample_rate, samples) | |
s.accept_waveform(sample_rate, tail_padding) | |
s.input_finished() | |
while recognizer.is_ready(s): | |
recognizer.decode_stream(s) | |
text = recognizer.get_result(s).text | |
return text.strip().lower() | |
def decode_offline_recognizer_sherpa_onnx( | |
recognizer: sherpa_onnx.OfflineRecognizer, | |
filename: str, | |
) -> str: | |
s = recognizer.create_stream() | |
samples, sample_rate = read_wave(filename) | |
s.accept_waveform(sample_rate, samples) | |
recognizer.decode_stream(s) | |
return s.result.text.lower() | |
def decode_online_recognizer_sherpa_onnx( | |
recognizer: sherpa_onnx.OnlineRecognizer, | |
filename: str, | |
) -> str: | |
s = recognizer.create_stream() | |
samples, sample_rate = read_wave(filename) | |
s.accept_waveform(sample_rate, samples) | |
tail_paddings = np.zeros(int(0.3 * sample_rate), dtype=np.float32) | |
s.accept_waveform(sample_rate, tail_paddings) | |
s.input_finished() | |
while recognizer.is_ready(s): | |
recognizer.decode_stream(s) | |
return recognizer.get_result(s).lower() | |
def decode( | |
recognizer: Union[ | |
sherpa.OfflineRecognizer, | |
sherpa.OnlineRecognizer, | |
sherpa_onnx.OfflineRecognizer, | |
sherpa_onnx.OnlineRecognizer, | |
], | |
filename: str, | |
) -> str: | |
if isinstance(recognizer, sherpa.OfflineRecognizer): | |
return decode_offline_recognizer(recognizer, filename) | |
elif isinstance(recognizer, sherpa.OnlineRecognizer): | |
return decode_online_recognizer(recognizer, filename) | |
elif isinstance(recognizer, sherpa_onnx.OfflineRecognizer): | |
return decode_offline_recognizer_sherpa_onnx(recognizer, filename) | |
elif isinstance(recognizer, sherpa_onnx.OnlineRecognizer): | |
return decode_online_recognizer_sherpa_onnx(recognizer, filename) | |
else: | |
raise ValueError(f"Unknown recognizer type {type(recognizer)}") | |
def get_pretrained_model( | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
) -> Union[sherpa.OfflineRecognizer, sherpa.OnlineRecognizer]: | |
if repo_id in chinese_models: | |
return chinese_models[repo_id]( | |
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths | |
) | |
elif repo_id in english_models: | |
return english_models[repo_id]( | |
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths | |
) | |
elif repo_id in chinese_english_mixed_models: | |
return chinese_english_mixed_models[repo_id]( | |
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths | |
) | |
elif repo_id in tibetan_models: | |
return tibetan_models[repo_id]( | |
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths | |
) | |
elif repo_id in arabic_models: | |
return arabic_models[repo_id]( | |
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths | |
) | |
elif repo_id in german_models: | |
return german_models[repo_id]( | |
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths | |
) | |
elif repo_id in french_models: | |
return french_models[repo_id]( | |
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths | |
) | |
elif repo_id in japanese_models: | |
return japanese_models[repo_id]( | |
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths | |
) | |
else: | |
raise ValueError(f"Unsupported repo_id: {repo_id}") | |
def _get_nn_model_filename( | |
repo_id: str, | |
filename: str, | |
subfolder: str = "exp", | |
) -> str: | |
nn_model_filename = hf_hub_download( | |
repo_id=repo_id, | |
filename=filename, | |
subfolder=subfolder, | |
) | |
return nn_model_filename | |
def _get_bpe_model_filename( | |
repo_id: str, | |
filename: str = "bpe.model", | |
subfolder: str = "data/lang_bpe_500", | |
) -> str: | |
bpe_model_filename = hf_hub_download( | |
repo_id=repo_id, | |
filename=filename, | |
subfolder=subfolder, | |
) | |
return bpe_model_filename | |
def _get_token_filename( | |
repo_id: str, | |
filename: str = "tokens.txt", | |
subfolder: str = "data/lang_char", | |
) -> str: | |
token_filename = hf_hub_download( | |
repo_id=repo_id, | |
filename=filename, | |
subfolder=subfolder, | |
) | |
return token_filename | |
def _get_aishell2_pretrained_model( | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
) -> sherpa.OfflineRecognizer: | |
assert repo_id in [ | |
# context-size 1 | |
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-A-2022-07-12", # noqa | |
# context-size 2 | |
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-B-2022-07-12", # noqa | |
], repo_id | |
nn_model = _get_nn_model_filename( | |
repo_id=repo_id, | |
filename="cpu_jit.pt", | |
) | |
tokens = _get_token_filename(repo_id=repo_id) | |
feat_config = sherpa.FeatureConfig() | |
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
feat_config.fbank_opts.mel_opts.num_bins = 80 | |
feat_config.fbank_opts.frame_opts.dither = 0 | |
config = sherpa.OfflineRecognizerConfig( | |
nn_model=nn_model, | |
tokens=tokens, | |
use_gpu=False, | |
feat_config=feat_config, | |
decoding_method=decoding_method, | |
num_active_paths=num_active_paths, | |
) | |
recognizer = sherpa.OfflineRecognizer(config) | |
return recognizer | |
def _get_gigaspeech_pre_trained_model( | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
) -> sherpa.OfflineRecognizer: | |
assert repo_id in [ | |
"wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2", | |
], repo_id | |
nn_model = _get_nn_model_filename( | |
repo_id=repo_id, | |
filename="cpu_jit-iter-3488000-avg-20.pt", | |
) | |
tokens = "./giga-tokens.txt" | |
feat_config = sherpa.FeatureConfig() | |
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
feat_config.fbank_opts.mel_opts.num_bins = 80 | |
feat_config.fbank_opts.frame_opts.dither = 0 | |
config = sherpa.OfflineRecognizerConfig( | |
nn_model=nn_model, | |
tokens=tokens, | |
use_gpu=False, | |
feat_config=feat_config, | |
decoding_method=decoding_method, | |
num_active_paths=num_active_paths, | |
) | |
recognizer = sherpa.OfflineRecognizer(config) | |
return recognizer | |
def _get_english_model( | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
) -> sherpa.OfflineRecognizer: | |
assert repo_id in [ | |
"WeijiZhuang/icefall-asr-librispeech-pruned-transducer-stateless8-2022-12-02", # noqa | |
"yfyeung/icefall-asr-multidataset-pruned_transducer_stateless7-2023-05-04", # noqa | |
"yfyeung/icefall-asr-finetune-mux-pruned_transducer_stateless7-2023-05-19", # noqa | |
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13", # noqa | |
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11", # noqa | |
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless8-2022-11-14", # noqa | |
"Zengwei/icefall-asr-librispeech-zipformer-large-2023-05-16", # noqa | |
"Zengwei/icefall-asr-librispeech-zipformer-2023-05-15", # noqa | |
"Zengwei/icefall-asr-librispeech-zipformer-small-2023-05-16", # noqa | |
"videodanchik/icefall-asr-tedlium3-conformer-ctc2", | |
"pkufool/icefall_asr_librispeech_conformer_ctc", | |
"WayneWiser/icefall-asr-librispeech-conformer-ctc2-jit-bpe-500-2022-07-21", | |
], repo_id | |
filename = "cpu_jit.pt" | |
if ( | |
repo_id | |
== "csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11" | |
): | |
filename = "cpu_jit-torch-1.10.0.pt" | |
if ( | |
repo_id | |
== "WeijiZhuang/icefall-asr-librispeech-pruned-transducer-stateless8-2022-12-02" | |
): | |
filename = "cpu_jit-torch-1.10.pt" | |
if ( | |
repo_id | |
== "yfyeung/icefall-asr-multidataset-pruned_transducer_stateless7-2023-05-04" | |
): | |
filename = "cpu_jit-epoch-30-avg-4.pt" | |
if ( | |
repo_id | |
== "yfyeung/icefall-asr-finetune-mux-pruned_transducer_stateless7-2023-05-19" | |
): | |
filename = "cpu_jit-epoch-20-avg-5.pt" | |
if repo_id in ( | |
"Zengwei/icefall-asr-librispeech-zipformer-large-2023-05-16", | |
"Zengwei/icefall-asr-librispeech-zipformer-2023-05-15", | |
"Zengwei/icefall-asr-librispeech-zipformer-small-2023-05-16", | |
): | |
filename = "jit_script.pt" | |
nn_model = _get_nn_model_filename( | |
repo_id=repo_id, | |
filename=filename, | |
) | |
subfolder = "data/lang_bpe_500" | |
if repo_id in ( | |
"videodanchik/icefall-asr-tedlium3-conformer-ctc2", | |
"pkufool/icefall_asr_librispeech_conformer_ctc", | |
): | |
subfolder = "data/lang_bpe" | |
tokens = _get_token_filename(repo_id=repo_id, subfolder=subfolder) | |
feat_config = sherpa.FeatureConfig() | |
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
feat_config.fbank_opts.mel_opts.num_bins = 80 | |
feat_config.fbank_opts.frame_opts.dither = 0 | |
config = sherpa.OfflineRecognizerConfig( | |
nn_model=nn_model, | |
tokens=tokens, | |
use_gpu=False, | |
feat_config=feat_config, | |
decoding_method=decoding_method, | |
num_active_paths=num_active_paths, | |
) | |
recognizer = sherpa.OfflineRecognizer(config) | |
return recognizer | |
def _get_wenetspeech_pre_trained_model( | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
): | |
assert repo_id in [ | |
"luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2", | |
], repo_id | |
nn_model = _get_nn_model_filename( | |
repo_id=repo_id, | |
filename="cpu_jit_epoch_10_avg_2_torch_1.7.1.pt", | |
) | |
tokens = _get_token_filename(repo_id=repo_id) | |
feat_config = sherpa.FeatureConfig() | |
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
feat_config.fbank_opts.mel_opts.num_bins = 80 | |
feat_config.fbank_opts.frame_opts.dither = 0 | |
config = sherpa.OfflineRecognizerConfig( | |
nn_model=nn_model, | |
tokens=tokens, | |
use_gpu=False, | |
feat_config=feat_config, | |
decoding_method=decoding_method, | |
num_active_paths=num_active_paths, | |
) | |
recognizer = sherpa.OfflineRecognizer(config) | |
return recognizer | |
def _get_chinese_english_mixed_model( | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
): | |
assert repo_id in [ | |
"luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5", | |
"ptrnull/icefall-asr-conv-emformer-transducer-stateless2-zh", | |
], repo_id | |
if repo_id == "luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5": | |
filename = "cpu_jit.pt" | |
subfolder = "data/lang_char" | |
elif repo_id == "ptrnull/icefall-asr-conv-emformer-transducer-stateless2-zh": | |
filename = "cpu_jit-epoch-11-avg-1.pt" | |
subfolder = "data/lang_char_bpe" | |
nn_model = _get_nn_model_filename( | |
repo_id=repo_id, | |
filename=filename, | |
) | |
tokens = _get_token_filename(repo_id=repo_id, subfolder=subfolder) | |
feat_config = sherpa.FeatureConfig() | |
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
feat_config.fbank_opts.mel_opts.num_bins = 80 | |
feat_config.fbank_opts.frame_opts.dither = 0 | |
config = sherpa.OfflineRecognizerConfig( | |
nn_model=nn_model, | |
tokens=tokens, | |
use_gpu=False, | |
feat_config=feat_config, | |
decoding_method=decoding_method, | |
num_active_paths=num_active_paths, | |
) | |
recognizer = sherpa.OfflineRecognizer(config) | |
return recognizer | |
def _get_alimeeting_pre_trained_model( | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
): | |
assert repo_id in [ | |
"desh2608/icefall-asr-alimeeting-pruned-transducer-stateless7", | |
"luomingshuang/icefall_asr_alimeeting_pruned_transducer_stateless2", | |
], repo_id | |
if repo_id == "desh2608/icefall-asr-alimeeting-pruned-transducer-stateless7": | |
filename = "cpu_jit.pt" | |
elif repo_id == "luomingshuang/icefall_asr_alimeeting_pruned_transducer_stateless2": | |
filename = "cpu_jit_torch_1.7.1.pt" | |
nn_model = _get_nn_model_filename( | |
repo_id=repo_id, | |
filename=filename, | |
) | |
tokens = _get_token_filename(repo_id=repo_id) | |
feat_config = sherpa.FeatureConfig() | |
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
feat_config.fbank_opts.mel_opts.num_bins = 80 | |
feat_config.fbank_opts.frame_opts.dither = 0 | |
config = sherpa.OfflineRecognizerConfig( | |
nn_model=nn_model, | |
tokens=tokens, | |
use_gpu=False, | |
feat_config=feat_config, | |
decoding_method=decoding_method, | |
num_active_paths=num_active_paths, | |
) | |
recognizer = sherpa.OfflineRecognizer(config) | |
return recognizer | |
def _get_wenet_model( | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
): | |
assert repo_id in [ | |
"csukuangfj/wenet-chinese-model", | |
"csukuangfj/wenet-english-model", | |
], repo_id | |
nn_model = _get_nn_model_filename( | |
repo_id=repo_id, | |
filename="final.zip", | |
subfolder=".", | |
) | |
tokens = _get_token_filename( | |
repo_id=repo_id, | |
filename="units.txt", | |
subfolder=".", | |
) | |
feat_config = sherpa.FeatureConfig(normalize_samples=False) | |
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
feat_config.fbank_opts.mel_opts.num_bins = 80 | |
feat_config.fbank_opts.frame_opts.dither = 0 | |
config = sherpa.OfflineRecognizerConfig( | |
nn_model=nn_model, | |
tokens=tokens, | |
use_gpu=False, | |
feat_config=feat_config, | |
decoding_method=decoding_method, | |
num_active_paths=num_active_paths, | |
) | |
recognizer = sherpa.OfflineRecognizer(config) | |
return recognizer | |
def _get_aidatatang_200zh_pretrained_mode( | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
): | |
assert repo_id in [ | |
"luomingshuang/icefall_asr_aidatatang-200zh_pruned_transducer_stateless2", | |
], repo_id | |
nn_model = _get_nn_model_filename( | |
repo_id=repo_id, | |
filename="cpu_jit_torch.1.7.1.pt", | |
) | |
tokens = _get_token_filename(repo_id=repo_id) | |
feat_config = sherpa.FeatureConfig() | |
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
feat_config.fbank_opts.mel_opts.num_bins = 80 | |
feat_config.fbank_opts.frame_opts.dither = 0 | |
config = sherpa.OfflineRecognizerConfig( | |
nn_model=nn_model, | |
tokens=tokens, | |
use_gpu=False, | |
feat_config=feat_config, | |
decoding_method=decoding_method, | |
num_active_paths=num_active_paths, | |
) | |
recognizer = sherpa.OfflineRecognizer(config) | |
return recognizer | |
def _get_tibetan_pre_trained_model( | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
): | |
assert repo_id in [ | |
"syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless7-2022-12-02", | |
"syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29", | |
], repo_id | |
filename = "cpu_jit.pt" | |
if ( | |
repo_id | |
== "syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29" | |
): | |
filename = "cpu_jit-epoch-28-avg-23-torch-1.10.0.pt" | |
nn_model = _get_nn_model_filename( | |
repo_id=repo_id, | |
filename=filename, | |
) | |
tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_500") | |
feat_config = sherpa.FeatureConfig() | |
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
feat_config.fbank_opts.mel_opts.num_bins = 80 | |
feat_config.fbank_opts.frame_opts.dither = 0 | |
config = sherpa.OfflineRecognizerConfig( | |
nn_model=nn_model, | |
tokens=tokens, | |
use_gpu=False, | |
feat_config=feat_config, | |
decoding_method=decoding_method, | |
num_active_paths=num_active_paths, | |
) | |
recognizer = sherpa.OfflineRecognizer(config) | |
return recognizer | |
def _get_arabic_pre_trained_model( | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
): | |
assert repo_id in [ | |
"AmirHussein/icefall-asr-mgb2-conformer_ctc-2022-27-06", | |
], repo_id | |
nn_model = _get_nn_model_filename( | |
repo_id=repo_id, | |
filename="cpu_jit.pt", | |
) | |
tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_5000") | |
feat_config = sherpa.FeatureConfig() | |
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
feat_config.fbank_opts.mel_opts.num_bins = 80 | |
feat_config.fbank_opts.frame_opts.dither = 0 | |
config = sherpa.OfflineRecognizerConfig( | |
nn_model=nn_model, | |
tokens=tokens, | |
use_gpu=False, | |
feat_config=feat_config, | |
decoding_method=decoding_method, | |
num_active_paths=num_active_paths, | |
) | |
recognizer = sherpa.OfflineRecognizer(config) | |
return recognizer | |
def _get_german_pre_trained_model( | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
): | |
assert repo_id in [ | |
"csukuangfj/wav2vec2.0-torchaudio", | |
], repo_id | |
nn_model = _get_nn_model_filename( | |
repo_id=repo_id, | |
filename="voxpopuli_asr_base_10k_de.pt", | |
subfolder=".", | |
) | |
tokens = _get_token_filename( | |
repo_id=repo_id, | |
filename="tokens-de.txt", | |
subfolder=".", | |
) | |
config = sherpa.OfflineRecognizerConfig( | |
nn_model=nn_model, | |
tokens=tokens, | |
use_gpu=False, | |
decoding_method=decoding_method, | |
num_active_paths=num_active_paths, | |
) | |
recognizer = sherpa.OfflineRecognizer(config) | |
return recognizer | |
def _get_french_pre_trained_model( | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
): | |
assert repo_id in [ | |
"shaojieli/sherpa-onnx-streaming-zipformer-fr-2023-04-14", | |
], repo_id | |
encoder_model = _get_nn_model_filename( | |
repo_id=repo_id, | |
filename="encoder-epoch-29-avg-9-with-averaged-model.onnx", | |
subfolder=".", | |
) | |
decoder_model = _get_nn_model_filename( | |
repo_id=repo_id, | |
filename="decoder-epoch-29-avg-9-with-averaged-model.onnx", | |
subfolder=".", | |
) | |
joiner_model = _get_nn_model_filename( | |
repo_id=repo_id, | |
filename="joiner-epoch-29-avg-9-with-averaged-model.onnx", | |
subfolder=".", | |
) | |
tokens = _get_token_filename(repo_id=repo_id, subfolder=".") | |
recognizer = sherpa_onnx.OnlineRecognizer( | |
tokens=tokens, | |
encoder=encoder_model, | |
decoder=decoder_model, | |
joiner=joiner_model, | |
num_threads=1, | |
sample_rate=16000, | |
feature_dim=80, | |
decoding_method=decoding_method, | |
max_active_paths=num_active_paths, | |
) | |
return recognizer | |
def _get_japanese_pre_trained_model( | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
) -> sherpa.OnlineRecognizer: | |
repo_id, kind = repo_id.rsplit("-", maxsplit=1) | |
assert repo_id in [ | |
"TeoWenShen/icefall-asr-csj-pruned-transducer-stateless7-streaming-230208" | |
], repo_id | |
assert kind in ("fluent", "disfluent"), kind | |
encoder_model = _get_nn_model_filename( | |
repo_id=repo_id, filename="encoder_jit_trace.pt", subfolder=f"exp_{kind}" | |
) | |
decoder_model = _get_nn_model_filename( | |
repo_id=repo_id, filename="decoder_jit_trace.pt", subfolder=f"exp_{kind}" | |
) | |
joiner_model = _get_nn_model_filename( | |
repo_id=repo_id, filename="joiner_jit_trace.pt", subfolder=f"exp_{kind}" | |
) | |
tokens = _get_token_filename(repo_id=repo_id) | |
feat_config = sherpa.FeatureConfig() | |
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
feat_config.fbank_opts.mel_opts.num_bins = 80 | |
feat_config.fbank_opts.frame_opts.dither = 0 | |
config = sherpa.OnlineRecognizerConfig( | |
nn_model="", | |
encoder_model=encoder_model, | |
decoder_model=decoder_model, | |
joiner_model=joiner_model, | |
tokens=tokens, | |
use_gpu=False, | |
feat_config=feat_config, | |
decoding_method=decoding_method, | |
num_active_paths=num_active_paths, | |
chunk_size=32, | |
) | |
recognizer = sherpa.OnlineRecognizer(config) | |
return recognizer | |
def _get_paraformer_zh_pre_trained_model( | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
) -> sherpa_onnx.OfflineRecognizer: | |
assert repo_id in [ | |
"csukuangfj/sherpa-onnx-paraformer-zh-2023-03-28", | |
], repo_id | |
nn_model = _get_nn_model_filename( | |
repo_id=repo_id, | |
filename="model.onnx", | |
subfolder=".", | |
) | |
tokens = _get_token_filename(repo_id=repo_id, subfolder=".") | |
recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer( | |
paraformer=nn_model, | |
tokens=tokens, | |
num_threads=2, | |
sample_rate=sample_rate, | |
feature_dim=80, | |
decoding_method="greedy_search", | |
debug=False, | |
) | |
return recognizer | |
chinese_models = { | |
"csukuangfj/sherpa-onnx-paraformer-zh-2023-03-28": _get_paraformer_zh_pre_trained_model, | |
"luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2": _get_wenetspeech_pre_trained_model, # noqa | |
"desh2608/icefall-asr-alimeeting-pruned-transducer-stateless7": _get_alimeeting_pre_trained_model, | |
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-A-2022-07-12": _get_aishell2_pretrained_model, # noqa | |
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-B-2022-07-12": _get_aishell2_pretrained_model, # noqa | |
"luomingshuang/icefall_asr_aidatatang-200zh_pruned_transducer_stateless2": _get_aidatatang_200zh_pretrained_mode, # noqa | |
"luomingshuang/icefall_asr_alimeeting_pruned_transducer_stateless2": _get_alimeeting_pre_trained_model, # noqa | |
"csukuangfj/wenet-chinese-model": _get_wenet_model, | |
# "csukuangfj/icefall-asr-wenetspeech-lstm-transducer-stateless-2022-10-14": _get_lstm_transducer_model, | |
} | |
english_models = { | |
"wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2": _get_gigaspeech_pre_trained_model, # noqa | |
"yfyeung/icefall-asr-multidataset-pruned_transducer_stateless7-2023-05-04": _get_english_model, # noqa | |
"yfyeung/icefall-asr-finetune-mux-pruned_transducer_stateless7-2023-05-19": _get_english_model, # noqa | |
"WeijiZhuang/icefall-asr-librispeech-pruned-transducer-stateless8-2022-12-02": _get_english_model, # noqa | |
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless8-2022-11-14": _get_english_model, # noqa | |
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11": _get_english_model, # noqa | |
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13": _get_english_model, # noqa | |
"Zengwei/icefall-asr-librispeech-zipformer-large-2023-05-16": _get_english_model, # noqa | |
"Zengwei/icefall-asr-librispeech-zipformer-2023-05-15": _get_english_model, # noqa | |
"Zengwei/icefall-asr-librispeech-zipformer-small-2023-05-16": _get_english_model, # noqa | |
"videodanchik/icefall-asr-tedlium3-conformer-ctc2": _get_english_model, | |
"pkufool/icefall_asr_librispeech_conformer_ctc": _get_english_model, | |
"WayneWiser/icefall-asr-librispeech-conformer-ctc2-jit-bpe-500-2022-07-21": _get_english_model, | |
"csukuangfj/wenet-english-model": _get_wenet_model, | |
} | |
chinese_english_mixed_models = { | |
"ptrnull/icefall-asr-conv-emformer-transducer-stateless2-zh": _get_chinese_english_mixed_model, | |
"luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5": _get_chinese_english_mixed_model, # noqa | |
} | |
tibetan_models = { | |
"syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless7-2022-12-02": _get_tibetan_pre_trained_model, # noqa | |
"syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29": _get_tibetan_pre_trained_model, # noqa | |
} | |
arabic_models = { | |
"AmirHussein/icefall-asr-mgb2-conformer_ctc-2022-27-06": _get_arabic_pre_trained_model, # noqa | |
} | |
german_models = { | |
"csukuangfj/wav2vec2.0-torchaudio": _get_german_pre_trained_model, | |
} | |
french_models = { | |
"shaojieli/sherpa-onnx-streaming-zipformer-fr-2023-04-14": _get_french_pre_trained_model, | |
} | |
japanese_models = { | |
"TeoWenShen/icefall-asr-csj-pruned-transducer-stateless7-streaming-230208-fluent": _get_japanese_pre_trained_model, | |
"TeoWenShen/icefall-asr-csj-pruned-transducer-stateless7-streaming-230208-disfluent": _get_japanese_pre_trained_model, | |
} | |
all_models = { | |
**chinese_models, | |
**english_models, | |
**chinese_english_mixed_models, | |
# **japanese_models, | |
**tibetan_models, | |
**arabic_models, | |
**german_models, | |
**french_models, | |
} | |
language_to_models = { | |
"Chinese": list(chinese_models.keys()), | |
"English": list(english_models.keys()), | |
"Chinese+English": list(chinese_english_mixed_models.keys()), | |
# "Japanese": list(japanese_models.keys()), | |
"Tibetan": list(tibetan_models.keys()), | |
"Arabic": list(arabic_models.keys()), | |
"German": list(german_models.keys()), | |
"French": list(french_models.keys()), | |
} | |