Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import datetime | |
import unittest | |
from transformers import CodeGenConfig, is_torch_available | |
from transformers.testing_utils import require_torch, slow, torch_device | |
from ...generation.test_utils import GenerationTesterMixin | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST, AutoTokenizer, CodeGenForCausalLM, CodeGenModel | |
class CodeGenModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=14, | |
seq_length=7, | |
is_training=True, | |
use_token_type_ids=True, | |
use_input_mask=True, | |
use_labels=True, | |
use_mc_token_ids=True, | |
vocab_size=256, | |
hidden_size=32, | |
rotary_dim=4, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.0, | |
attention_probs_dropout_prob=0.0, | |
max_position_embeddings=512, | |
type_vocab_size=16, | |
type_sequence_label_size=2, | |
initializer_range=0.02, | |
num_labels=3, | |
num_choices=4, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_token_type_ids = use_token_type_ids | |
self.use_input_mask = use_input_mask | |
self.use_labels = use_labels | |
self.use_mc_token_ids = use_mc_token_ids | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.rotary_dim = rotary_dim | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.num_labels = num_labels | |
self.num_choices = num_choices | |
self.scope = None | |
self.bos_token_id = vocab_size - 1 | |
self.eos_token_id = vocab_size - 1 | |
self.pad_token_id = vocab_size - 1 | |
def get_large_model_config(self): | |
return CodeGenConfig.from_pretrained("Salesforce/codegen-2B-mono") | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
mc_token_ids = None | |
if self.use_mc_token_ids: | |
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) | |
sequence_labels = None | |
token_labels = None | |
choice_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
config = self.get_config() | |
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) | |
return ( | |
config, | |
input_ids, | |
input_mask, | |
head_mask, | |
token_type_ids, | |
mc_token_ids, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) | |
def get_config(self): | |
return CodeGenConfig( | |
vocab_size=self.vocab_size, | |
n_embd=self.hidden_size, | |
n_layer=self.num_hidden_layers, | |
n_head=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
n_positions=self.max_position_embeddings, | |
type_vocab_size=self.type_vocab_size, | |
initializer_range=self.initializer_range, | |
use_cache=True, | |
bos_token_id=self.bos_token_id, | |
eos_token_id=self.eos_token_id, | |
pad_token_id=self.pad_token_id, | |
rotary_dim=self.rotary_dim, | |
) | |
def prepare_config_and_inputs_for_decoder(self): | |
( | |
config, | |
input_ids, | |
input_mask, | |
head_mask, | |
token_type_ids, | |
mc_token_ids, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = self.prepare_config_and_inputs() | |
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) | |
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) | |
return ( | |
config, | |
input_ids, | |
input_mask, | |
head_mask, | |
token_type_ids, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
) | |
def create_and_check_codegen_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): | |
model = CodeGenModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask) | |
result = model(input_ids, token_type_ids=token_type_ids) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
self.parent.assertEqual(len(result.past_key_values), config.n_layer) | |
def create_and_check_codegen_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): | |
model = CodeGenModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
# first forward pass | |
outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True) | |
outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids) | |
outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False) | |
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) | |
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) | |
output, past = outputs.to_tuple() | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) | |
next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size) | |
# append to next input_ids and token_type_ids | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1) | |
output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"] | |
output_from_past = model(next_tokens, token_type_ids=next_token_types, past_key_values=past)[ | |
"last_hidden_state" | |
] | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
def create_and_check_codegen_model_attention_mask_past( | |
self, config, input_ids, input_mask, head_mask, token_type_ids, *args | |
): | |
model = CodeGenModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
# create attention mask | |
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) | |
half_seq_length = self.seq_length // 2 | |
attn_mask[:, half_seq_length:] = 0 | |
# first forward pass | |
output, past = model(input_ids, attention_mask=attn_mask).to_tuple() | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) | |
# change a random masked slice from input_ids | |
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 | |
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) | |
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens | |
# append to next input_ids and attn_mask | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
attn_mask = torch.cat( | |
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], | |
dim=1, | |
) | |
# get two different outputs | |
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] | |
output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"] | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
def create_and_check_codegen_model_past_large_inputs( | |
self, config, input_ids, input_mask, head_mask, token_type_ids, *args | |
): | |
model = CodeGenModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
# first forward pass | |
outputs = model(input_ids, token_type_ids=token_type_ids, attention_mask=input_mask, use_cache=True) | |
output, past = outputs.to_tuple() | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) | |
next_token_types = ids_tensor([self.batch_size, 3], self.type_vocab_size) | |
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) | |
# append to next input_ids and token_type_ids | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1) | |
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) | |
output_from_no_past = model( | |
next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask | |
)["last_hidden_state"] | |
output_from_past = model( | |
next_tokens, token_type_ids=next_token_types, attention_mask=next_attention_mask, past_key_values=past | |
)["last_hidden_state"] | |
self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1]) | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): | |
model = CodeGenForCausalLM(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids) | |
self.parent.assertEqual(result.loss.shape, ()) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
def create_and_check_forward_and_backwards( | |
self, config, input_ids, input_mask, head_mask, token_type_ids, *args, gradient_checkpointing=False | |
): | |
model = CodeGenForCausalLM(config) | |
if gradient_checkpointing: | |
model.gradient_checkpointing_enable() | |
model.to(torch_device) | |
result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids) | |
self.parent.assertEqual(result.loss.shape, ()) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
result.loss.backward() | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
input_mask, | |
head_mask, | |
token_type_ids, | |
mc_token_ids, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask} | |
return config, inputs_dict | |
class CodeGenModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = (CodeGenModel, CodeGenForCausalLM) if is_torch_available() else () | |
all_generative_model_classes = (CodeGenForCausalLM,) if is_torch_available() else () | |
pipeline_model_mapping = ( | |
{"feature-extraction": CodeGenModel, "text-generation": CodeGenForCausalLM} if is_torch_available() else {} | |
) | |
fx_compatible = False | |
test_pruning = False | |
test_missing_keys = False | |
test_model_parallel = False | |
test_head_masking = False | |
# special case for DoubleHeads model | |
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): | |
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) | |
return inputs_dict | |
def setUp(self): | |
self.model_tester = CodeGenModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=CodeGenConfig, n_embd=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_codegen_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_codegen_model(*config_and_inputs) | |
def test_codegen_model_past(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_codegen_model_past(*config_and_inputs) | |
def test_codegen_model_att_mask_past(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_codegen_model_attention_mask_past(*config_and_inputs) | |
def test_codegen_model_past_large_inputs(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_codegen_model_past_large_inputs(*config_and_inputs) | |
def test_codegen_lm_head_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_lm_head_model(*config_and_inputs) | |
def test_codegen_gradient_checkpointing(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True) | |
def test_batch_generation(self): | |
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen-350M-mono") | |
model = CodeGenForCausalLM.from_pretrained("Salesforce/codegen-350M-mono") | |
model.to(torch_device) | |
tokenizer.padding_side = "left" | |
# Define PAD Token = EOS Token = 50256 | |
tokenizer.pad_token = tokenizer.eos_token | |
model.config.pad_token_id = model.config.eos_token_id | |
# use different length sentences to test batching | |
sentences = ["def hellow_world():", "def greet(name):"] | |
inputs = tokenizer(sentences, return_tensors="pt", padding=True) | |
input_ids = inputs["input_ids"].to(torch_device) | |
token_type_ids = torch.cat( | |
[ | |
input_ids.new_full((input_ids.shape[0], input_ids.shape[1] - 1), 0), | |
input_ids.new_full((input_ids.shape[0], 1), 500), | |
], | |
dim=-1, | |
) | |
outputs = model.generate( | |
input_ids=input_ids, | |
attention_mask=inputs["attention_mask"].to(torch_device), | |
) | |
outputs_tt = model.generate( | |
input_ids=input_ids, | |
attention_mask=inputs["attention_mask"].to(torch_device), | |
token_type_ids=token_type_ids, | |
) | |
inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device) | |
output_non_padded = model.generate(input_ids=inputs_non_padded) | |
num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() | |
inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device) | |
output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings) | |
batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
batch_out_sentence_tt = tokenizer.batch_decode(outputs_tt, skip_special_tokens=True) | |
non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True) | |
padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True) | |
expected_output_sentence = [ | |
'def hellow_world():\n print("Hello World")\n\nhellow_world()', | |
'def greet(name):\n print(f"Hello {name}")\n\ng', | |
] | |
self.assertListEqual(expected_output_sentence, batch_out_sentence) | |
self.assertTrue(batch_out_sentence_tt != batch_out_sentence) # token_type_ids should change output | |
self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence]) | |
def test_model_from_pretrained(self): | |
for model_name in CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = CodeGenModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
class CodeGenModelLanguageGenerationTest(unittest.TestCase): | |
def test_lm_generate_codegen(self): | |
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen-350M-mono") | |
for checkpointing in [True, False]: | |
model = CodeGenForCausalLM.from_pretrained("Salesforce/codegen-350M-mono") | |
if checkpointing: | |
model.gradient_checkpointing_enable() | |
else: | |
model.gradient_checkpointing_disable() | |
model.to(torch_device) | |
inputs = tokenizer("def hello_world():", return_tensors="pt").to(torch_device) | |
expected_output = 'def hello_world():\n print("Hello World")\n\nhello_world()\n\n' | |
output_ids = model.generate(**inputs, do_sample=False) | |
output_str = tokenizer.batch_decode(output_ids)[0] | |
self.assertEqual(output_str, expected_output) | |
def test_codegen_sample(self): | |
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen-350M-mono") | |
model = CodeGenForCausalLM.from_pretrained("Salesforce/codegen-350M-mono") | |
model.to(torch_device) | |
torch.manual_seed(0) | |
if torch_device == "cuda": | |
torch.cuda.manual_seed(0) | |
tokenized = tokenizer("def hello_world():", return_tensors="pt", return_token_type_ids=True) | |
input_ids = tokenized.input_ids.to(torch_device) | |
output_ids = model.generate(input_ids, do_sample=True) | |
output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
token_type_ids = tokenized.token_type_ids.to(torch_device) | |
output_seq = model.generate(input_ids=input_ids, do_sample=True, num_return_sequences=5) | |
output_seq_tt = model.generate( | |
input_ids=input_ids, token_type_ids=token_type_ids, do_sample=True, num_return_sequences=5 | |
) | |
output_seq_strs = tokenizer.batch_decode(output_seq, skip_special_tokens=True) | |
output_seq_tt_strs = tokenizer.batch_decode(output_seq_tt, skip_special_tokens=True) | |
if torch_device == "cuda": | |
EXPECTED_OUTPUT_STR = 'def hello_world():\n print("Hello World")\n return True\n\nresult =' | |
else: | |
EXPECTED_OUTPUT_STR = "def hello_world():\r\n print('Hello, World.')\r\n\r\n\r" | |
self.assertEqual(output_str, EXPECTED_OUTPUT_STR) | |
self.assertTrue( | |
all([output_seq_strs[idx] != output_seq_tt_strs[idx] for idx in range(len(output_seq_tt_strs))]) | |
) # token_type_ids should change output | |
def test_codegen_sample_max_time(self): | |
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen-350M-mono") | |
model = CodeGenForCausalLM.from_pretrained("Salesforce/codegen-350M-mono") | |
model.to(torch_device) | |
torch.manual_seed(0) | |
tokenized = tokenizer("Today is a nice day and", return_tensors="pt", return_token_type_ids=True) | |
input_ids = tokenized.input_ids.to(torch_device) | |
MAX_TIME = 0.05 | |
start = datetime.datetime.now() | |
model.generate(input_ids, do_sample=True, max_time=MAX_TIME, max_length=256) | |
duration = datetime.datetime.now() - start | |
self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) | |
self.assertLess(duration, datetime.timedelta(seconds=2 * MAX_TIME)) | |
start = datetime.datetime.now() | |
model.generate(input_ids, do_sample=False, max_time=MAX_TIME, max_length=256) | |
duration = datetime.datetime.now() - start | |
self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) | |
self.assertLess(duration, datetime.timedelta(seconds=2 * MAX_TIME)) | |
start = datetime.datetime.now() | |
model.generate(input_ids, do_sample=False, num_beams=2, max_time=MAX_TIME, max_length=256) | |
duration = datetime.datetime.now() - start | |
self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) | |
self.assertLess(duration, datetime.timedelta(seconds=2 * MAX_TIME)) | |
start = datetime.datetime.now() | |
model.generate(input_ids, do_sample=True, num_beams=2, max_time=MAX_TIME, max_length=256) | |
duration = datetime.datetime.now() - start | |
self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) | |
self.assertLess(duration, datetime.timedelta(seconds=2 * MAX_TIME)) | |
start = datetime.datetime.now() | |
model.generate(input_ids, do_sample=False, max_time=None, max_length=256) | |
duration = datetime.datetime.now() - start | |
self.assertGreater(duration, datetime.timedelta(seconds=2 * MAX_TIME)) | |