chendl's picture
add requirements
a1d409e
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning a 🤗 Transformers model on token classification tasks (NER, POS, CHUNKS) relying on the accelerate library
without using a Trainer.
"""
import json
import logging
import os
import random
from dataclasses import dataclass, field
from typing import Optional
import datasets
import evaluate
import tensorflow as tf
from datasets import ClassLabel, load_dataset
import transformers
from transformers import (
CONFIG_MAPPING,
AutoConfig,
AutoTokenizer,
DataCollatorForTokenClassification,
HfArgumentParser,
PushToHubCallback,
TFAutoModelForTokenClassification,
TFTrainingArguments,
create_optimizer,
set_seed,
)
from transformers.utils import send_example_telemetry
from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
logger.addHandler(logging.StreamHandler())
require_version("datasets>=1.8.0", "To fix: pip install -r examples/tensorflow/token-classification/requirements.txt")
# region Command-line arguments
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(
default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
)
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
)
test_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
)
text_column_name: Optional[str] = field(
default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."}
)
label_column_name: Optional[str] = field(
default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."}
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_length: Optional[int] = field(default=256, metadata={"help": "Max length (in tokens) for truncation/padding"})
pad_to_max_length: bool = field(
default=False,
metadata={
"help": (
"Whether to pad all samples to model maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
},
)
label_all_tokens: bool = field(
default=False,
metadata={
"help": (
"Whether to put the label for one word on all tokens of generated by that word or just on the "
"one (in which case the other tokens will have a padding index)."
)
},
)
return_entity_level_metrics: bool = field(
default=False,
metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
)
def __post_init__(self):
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
self.task_name = self.task_name.lower()
# endregion
def main():
# region Argument Parsing
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_ner", model_args, data_args, framework="tensorflow")
# endregion
# region Setup logging
# we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO)
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
# If passed along, set the training seed now.
if training_args.seed is not None:
set_seed(training_args.seed)
# endregion
# region Loading datasets
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets for token classification task available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'tokens' or the first column if no column called
# 'tokens' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
use_auth_token=True if model_args.use_auth_token else None,
)
else:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.train_file.split(".")[-1]
raw_datasets = load_dataset(
extension,
data_files=data_files,
use_auth_token=True if model_args.use_auth_token else None,
)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
if raw_datasets["train"] is not None:
column_names = raw_datasets["train"].column_names
features = raw_datasets["train"].features
else:
column_names = raw_datasets["validation"].column_names
features = raw_datasets["validation"].features
if data_args.text_column_name is not None:
text_column_name = data_args.text_column_name
elif "tokens" in column_names:
text_column_name = "tokens"
else:
text_column_name = column_names[0]
if data_args.label_column_name is not None:
label_column_name = data_args.label_column_name
elif f"{data_args.task_name}_tags" in column_names:
label_column_name = f"{data_args.task_name}_tags"
else:
label_column_name = column_names[1]
# In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
# unique labels.
def get_label_list(labels):
unique_labels = set()
for label in labels:
unique_labels = unique_labels | set(label)
label_list = list(unique_labels)
label_list.sort()
return label_list
if isinstance(features[label_column_name].feature, ClassLabel):
label_list = features[label_column_name].feature.names
# No need to convert the labels since they are already ints.
label_to_id = {i: i for i in range(len(label_list))}
else:
label_list = get_label_list(raw_datasets["train"][label_column_name])
label_to_id = {l: i for i, l in enumerate(label_list)}
num_labels = len(label_list)
# endregion
# region Load config and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if model_args.config_name:
config = AutoConfig.from_pretrained(model_args.config_name, num_labels=num_labels)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(model_args.model_name_or_path, num_labels=num_labels)
else:
config = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
if not tokenizer_name_or_path:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
if config.model_type in {"gpt2", "roberta"}:
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, use_fast=True, add_prefix_space=True)
else:
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, use_fast=True)
# endregion
# region Preprocessing the raw datasets
# First we tokenize all the texts.
padding = "max_length" if data_args.pad_to_max_length else False
# Tokenize all texts and align the labels with them.
def tokenize_and_align_labels(examples):
tokenized_inputs = tokenizer(
examples[text_column_name],
max_length=data_args.max_length,
padding=padding,
truncation=True,
# We use this argument because the texts in our dataset are lists of words (with a label for each word).
is_split_into_words=True,
)
labels = []
for i, label in enumerate(examples[label_column_name]):
word_ids = tokenized_inputs.word_ids(batch_index=i)
previous_word_idx = None
label_ids = []
for word_idx in word_ids:
# Special tokens have a word id that is None. We set the label to -100 so they are automatically
# ignored in the loss function.
if word_idx is None:
label_ids.append(-100)
# We set the label for the first token of each word.
elif word_idx != previous_word_idx:
label_ids.append(label_to_id[label[word_idx]])
# For the other tokens in a word, we set the label to either the current label or -100, depending on
# the label_all_tokens flag.
else:
label_ids.append(label_to_id[label[word_idx]] if data_args.label_all_tokens else -100)
previous_word_idx = word_idx
labels.append(label_ids)
tokenized_inputs["labels"] = labels
return tokenized_inputs
processed_raw_datasets = raw_datasets.map(
tokenize_and_align_labels,
batched=True,
remove_columns=raw_datasets["train"].column_names,
desc="Running tokenizer on dataset",
)
train_dataset = processed_raw_datasets["train"]
eval_dataset = processed_raw_datasets["validation"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
# Log a few random samples from the training set:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
# endregion
with training_args.strategy.scope():
# region Initialize model
if model_args.model_name_or_path:
model = TFAutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path,
config=config,
)
else:
logger.info("Training new model from scratch")
model = TFAutoModelForTokenClassification.from_config(config)
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embeddings = model.get_input_embeddings()
# Matt: This is a temporary workaround as we transition our models to exclusively using Keras embeddings.
# As soon as the transition is complete, all embeddings should be keras.Embeddings layers, and
# the weights will always be in embeddings.embeddings.
if hasattr(embeddings, "embeddings"):
embedding_size = embeddings.embeddings.shape[0]
else:
embedding_size = embeddings.weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
# endregion
# region Create TF datasets
# We need the DataCollatorForTokenClassification here, as we need to correctly pad labels as
# well as inputs.
collate_fn = DataCollatorForTokenClassification(tokenizer=tokenizer, return_tensors="np")
num_replicas = training_args.strategy.num_replicas_in_sync
total_train_batch_size = training_args.per_device_train_batch_size * num_replicas
dataset_options = tf.data.Options()
dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF
# model.prepare_tf_dataset() wraps a Hugging Face dataset in a tf.data.Dataset which is ready to use in
# training. This is the recommended way to use a Hugging Face dataset when training with Keras. You can also
# use the lower-level dataset.to_tf_dataset() method, but you will have to specify things like column names
# yourself if you use this method, whereas they are automatically inferred from the model input names when
# using model.prepare_tf_dataset()
# For more info see the docs:
# https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset
# https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset
tf_train_dataset = model.prepare_tf_dataset(
train_dataset,
collate_fn=collate_fn,
batch_size=total_train_batch_size,
shuffle=True,
).with_options(dataset_options)
total_eval_batch_size = training_args.per_device_eval_batch_size * num_replicas
tf_eval_dataset = model.prepare_tf_dataset(
eval_dataset,
collate_fn=collate_fn,
batch_size=total_eval_batch_size,
shuffle=False,
).with_options(dataset_options)
# endregion
# region Optimizer, loss and compilation
num_train_steps = int(len(tf_train_dataset) * training_args.num_train_epochs)
if training_args.warmup_steps > 0:
num_warmup_steps = training_args.warmup_steps
elif training_args.warmup_ratio > 0:
num_warmup_steps = int(num_train_steps * training_args.warmup_ratio)
else:
num_warmup_steps = 0
optimizer, lr_schedule = create_optimizer(
init_lr=training_args.learning_rate,
num_train_steps=num_train_steps,
num_warmup_steps=num_warmup_steps,
adam_beta1=training_args.adam_beta1,
adam_beta2=training_args.adam_beta2,
adam_epsilon=training_args.adam_epsilon,
weight_decay_rate=training_args.weight_decay,
adam_global_clipnorm=training_args.max_grad_norm,
)
model.compile(optimizer=optimizer, jit_compile=training_args.xla)
# endregion
# Metrics
metric = evaluate.load("seqeval")
def get_labels(y_pred, y_true):
# Transform predictions and references tensos to numpy arrays
# Remove ignored index (special tokens)
true_predictions = [
[label_list[p] for (p, l) in zip(pred, gold_label) if l != -100]
for pred, gold_label in zip(y_pred, y_true)
]
true_labels = [
[label_list[l] for (p, l) in zip(pred, gold_label) if l != -100]
for pred, gold_label in zip(y_pred, y_true)
]
return true_predictions, true_labels
def compute_metrics():
results = metric.compute()
if data_args.return_entity_level_metrics:
# Unpack nested dictionaries
final_results = {}
for key, value in results.items():
if isinstance(value, dict):
for n, v in value.items():
final_results[f"{key}_{n}"] = v
else:
final_results[key] = value
return final_results
else:
return {
"precision": results["overall_precision"],
"recall": results["overall_recall"],
"f1": results["overall_f1"],
"accuracy": results["overall_accuracy"],
}
# endregion
# region Preparing push_to_hub and model card
push_to_hub_model_id = training_args.push_to_hub_model_id
model_name = model_args.model_name_or_path.split("/")[-1]
if not push_to_hub_model_id:
if data_args.dataset_name is not None:
push_to_hub_model_id = f"{model_name}-finetuned-{data_args.dataset_name}"
else:
push_to_hub_model_id = f"{model_name}-finetuned-token-classification"
model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "token-classification"}
if data_args.dataset_name is not None:
model_card_kwargs["dataset_tags"] = data_args.dataset_name
if data_args.dataset_config_name is not None:
model_card_kwargs["dataset_args"] = data_args.dataset_config_name
model_card_kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
else:
model_card_kwargs["dataset"] = data_args.dataset_name
if training_args.push_to_hub:
callbacks = [
PushToHubCallback(
output_dir=training_args.output_dir,
hub_model_id=push_to_hub_model_id,
hub_token=training_args.push_to_hub_token,
tokenizer=tokenizer,
**model_card_kwargs,
)
]
else:
callbacks = []
# endregion
# region Training
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {training_args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
logger.info(f" Total train batch size = {total_train_batch_size}")
# Only show the progress bar once on each machine.
model.fit(
tf_train_dataset,
validation_data=tf_eval_dataset,
epochs=int(training_args.num_train_epochs),
callbacks=callbacks,
)
# endregion
# region Predictions
# If you have variable batch sizes (i.e. not using pad_to_max_length), then
# this bit might fail on TF < 2.8 because TF can't concatenate outputs of varying seq
# length from predict().
try:
predictions = model.predict(tf_eval_dataset, batch_size=training_args.per_device_eval_batch_size)["logits"]
except tf.python.framework.errors_impl.InvalidArgumentError:
raise ValueError(
"Concatenating predictions failed! If your version of TensorFlow is 2.8.0 or older "
"then you will need to use --pad_to_max_length to generate predictions, as older "
"versions of TensorFlow cannot concatenate variable-length predictions as RaggedTensor."
)
if isinstance(predictions, tf.RaggedTensor):
predictions = predictions.to_tensor(default_value=-100)
predictions = tf.math.argmax(predictions, axis=-1).numpy()
if "label" in eval_dataset:
labels = eval_dataset.with_format("tf")["label"]
else:
labels = eval_dataset.with_format("tf")["labels"]
if isinstance(labels, tf.RaggedTensor):
labels = labels.to_tensor(default_value=-100)
labels = labels.numpy()
attention_mask = eval_dataset.with_format("tf")["attention_mask"]
if isinstance(attention_mask, tf.RaggedTensor):
attention_mask = attention_mask.to_tensor(default_value=-100)
attention_mask = attention_mask.numpy()
labels[attention_mask == 0] = -100
preds, refs = get_labels(predictions, labels)
metric.add_batch(
predictions=preds,
references=refs,
)
eval_metric = compute_metrics()
logger.info("Evaluation metrics:")
for key, val in eval_metric.items():
logger.info(f"{key}: {val:.4f}")
if training_args.output_dir is not None:
output_eval_file = os.path.join(training_args.output_dir, "all_results.json")
with open(output_eval_file, "w") as writer:
writer.write(json.dumps(eval_metric))
# endregion
if training_args.output_dir is not None and not training_args.push_to_hub:
# If we're not pushing to hub, at least save a local copy when we're done
model.save_pretrained(training_args.output_dir)
if __name__ == "__main__":
main()