Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Fine-tuning a 🤗 Transformers model on token classification tasks (NER, POS, CHUNKS) relying on the accelerate library | |
without using a Trainer. | |
""" | |
import json | |
import logging | |
import os | |
import random | |
from dataclasses import dataclass, field | |
from typing import Optional | |
import datasets | |
import evaluate | |
import tensorflow as tf | |
from datasets import ClassLabel, load_dataset | |
import transformers | |
from transformers import ( | |
CONFIG_MAPPING, | |
AutoConfig, | |
AutoTokenizer, | |
DataCollatorForTokenClassification, | |
HfArgumentParser, | |
PushToHubCallback, | |
TFAutoModelForTokenClassification, | |
TFTrainingArguments, | |
create_optimizer, | |
set_seed, | |
) | |
from transformers.utils import send_example_telemetry | |
from transformers.utils.versions import require_version | |
logger = logging.getLogger(__name__) | |
logger.addHandler(logging.StreamHandler()) | |
require_version("datasets>=1.8.0", "To fix: pip install -r examples/tensorflow/token-classification/requirements.txt") | |
# region Command-line arguments | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
""" | |
model_name_or_path: str = field( | |
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
) | |
config_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
) | |
tokenizer_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
) | |
cache_dir: Optional[str] = field( | |
default=None, | |
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, | |
) | |
model_revision: str = field( | |
default="main", | |
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | |
) | |
use_auth_token: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Will use the token generated when running `huggingface-cli login` (necessary to use this script " | |
"with private models)." | |
) | |
}, | |
) | |
class DataTrainingArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
""" | |
task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."}) | |
dataset_name: Optional[str] = field( | |
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} | |
) | |
dataset_config_name: Optional[str] = field( | |
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | |
) | |
train_file: Optional[str] = field( | |
default=None, metadata={"help": "The input training data file (a csv or JSON file)."} | |
) | |
validation_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."}, | |
) | |
test_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."}, | |
) | |
text_column_name: Optional[str] = field( | |
default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."} | |
) | |
label_column_name: Optional[str] = field( | |
default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."} | |
) | |
overwrite_cache: bool = field( | |
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
) | |
preprocessing_num_workers: Optional[int] = field( | |
default=None, | |
metadata={"help": "The number of processes to use for the preprocessing."}, | |
) | |
max_length: Optional[int] = field(default=256, metadata={"help": "Max length (in tokens) for truncation/padding"}) | |
pad_to_max_length: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Whether to pad all samples to model maximum sentence length. " | |
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More " | |
"efficient on GPU but very bad for TPU." | |
) | |
}, | |
) | |
max_train_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of training examples to this " | |
"value if set." | |
) | |
}, | |
) | |
max_eval_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
"value if set." | |
) | |
}, | |
) | |
max_predict_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of prediction examples to this " | |
"value if set." | |
) | |
}, | |
) | |
label_all_tokens: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Whether to put the label for one word on all tokens of generated by that word or just on the " | |
"one (in which case the other tokens will have a padding index)." | |
) | |
}, | |
) | |
return_entity_level_metrics: bool = field( | |
default=False, | |
metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."}, | |
) | |
def __post_init__(self): | |
if self.dataset_name is None and self.train_file is None and self.validation_file is None: | |
raise ValueError("Need either a dataset name or a training/validation file.") | |
else: | |
if self.train_file is not None: | |
extension = self.train_file.split(".")[-1] | |
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." | |
if self.validation_file is not None: | |
extension = self.validation_file.split(".")[-1] | |
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." | |
self.task_name = self.task_name.lower() | |
# endregion | |
def main(): | |
# region Argument Parsing | |
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
# information sent is the one passed as arguments along with your Python/PyTorch versions. | |
send_example_telemetry("run_ner", model_args, data_args, framework="tensorflow") | |
# endregion | |
# region Setup logging | |
# we only want one process per machine to log things on the screen. | |
# accelerator.is_local_main_process is only True for one process per machine. | |
logger.setLevel(logging.INFO) | |
datasets.utils.logging.set_verbosity_warning() | |
transformers.utils.logging.set_verbosity_info() | |
# If passed along, set the training seed now. | |
if training_args.seed is not None: | |
set_seed(training_args.seed) | |
# endregion | |
# region Loading datasets | |
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) | |
# or just provide the name of one of the public datasets for token classification task available on the hub at https://huggingface.co/datasets/ | |
# (the dataset will be downloaded automatically from the datasets Hub). | |
# | |
# For CSV/JSON files, this script will use the column called 'tokens' or the first column if no column called | |
# 'tokens' is found. You can easily tweak this behavior (see below). | |
# | |
# In distributed training, the load_dataset function guarantee that only one local process can concurrently | |
# download the dataset. | |
if data_args.dataset_name is not None: | |
# Downloading and loading a dataset from the hub. | |
raw_datasets = load_dataset( | |
data_args.dataset_name, | |
data_args.dataset_config_name, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
else: | |
data_files = {} | |
if data_args.train_file is not None: | |
data_files["train"] = data_args.train_file | |
if data_args.validation_file is not None: | |
data_files["validation"] = data_args.validation_file | |
extension = data_args.train_file.split(".")[-1] | |
raw_datasets = load_dataset( | |
extension, | |
data_files=data_files, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at | |
# https://huggingface.co/docs/datasets/loading_datasets.html. | |
if raw_datasets["train"] is not None: | |
column_names = raw_datasets["train"].column_names | |
features = raw_datasets["train"].features | |
else: | |
column_names = raw_datasets["validation"].column_names | |
features = raw_datasets["validation"].features | |
if data_args.text_column_name is not None: | |
text_column_name = data_args.text_column_name | |
elif "tokens" in column_names: | |
text_column_name = "tokens" | |
else: | |
text_column_name = column_names[0] | |
if data_args.label_column_name is not None: | |
label_column_name = data_args.label_column_name | |
elif f"{data_args.task_name}_tags" in column_names: | |
label_column_name = f"{data_args.task_name}_tags" | |
else: | |
label_column_name = column_names[1] | |
# In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the | |
# unique labels. | |
def get_label_list(labels): | |
unique_labels = set() | |
for label in labels: | |
unique_labels = unique_labels | set(label) | |
label_list = list(unique_labels) | |
label_list.sort() | |
return label_list | |
if isinstance(features[label_column_name].feature, ClassLabel): | |
label_list = features[label_column_name].feature.names | |
# No need to convert the labels since they are already ints. | |
label_to_id = {i: i for i in range(len(label_list))} | |
else: | |
label_list = get_label_list(raw_datasets["train"][label_column_name]) | |
label_to_id = {l: i for i, l in enumerate(label_list)} | |
num_labels = len(label_list) | |
# endregion | |
# region Load config and tokenizer | |
# | |
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently | |
# download model & vocab. | |
if model_args.config_name: | |
config = AutoConfig.from_pretrained(model_args.config_name, num_labels=num_labels) | |
elif model_args.model_name_or_path: | |
config = AutoConfig.from_pretrained(model_args.model_name_or_path, num_labels=num_labels) | |
else: | |
config = CONFIG_MAPPING[model_args.model_type]() | |
logger.warning("You are instantiating a new config instance from scratch.") | |
tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path | |
if not tokenizer_name_or_path: | |
raise ValueError( | |
"You are instantiating a new tokenizer from scratch. This is not supported by this script." | |
"You can do it from another script, save it, and load it from here, using --tokenizer_name." | |
) | |
if config.model_type in {"gpt2", "roberta"}: | |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, use_fast=True, add_prefix_space=True) | |
else: | |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, use_fast=True) | |
# endregion | |
# region Preprocessing the raw datasets | |
# First we tokenize all the texts. | |
padding = "max_length" if data_args.pad_to_max_length else False | |
# Tokenize all texts and align the labels with them. | |
def tokenize_and_align_labels(examples): | |
tokenized_inputs = tokenizer( | |
examples[text_column_name], | |
max_length=data_args.max_length, | |
padding=padding, | |
truncation=True, | |
# We use this argument because the texts in our dataset are lists of words (with a label for each word). | |
is_split_into_words=True, | |
) | |
labels = [] | |
for i, label in enumerate(examples[label_column_name]): | |
word_ids = tokenized_inputs.word_ids(batch_index=i) | |
previous_word_idx = None | |
label_ids = [] | |
for word_idx in word_ids: | |
# Special tokens have a word id that is None. We set the label to -100 so they are automatically | |
# ignored in the loss function. | |
if word_idx is None: | |
label_ids.append(-100) | |
# We set the label for the first token of each word. | |
elif word_idx != previous_word_idx: | |
label_ids.append(label_to_id[label[word_idx]]) | |
# For the other tokens in a word, we set the label to either the current label or -100, depending on | |
# the label_all_tokens flag. | |
else: | |
label_ids.append(label_to_id[label[word_idx]] if data_args.label_all_tokens else -100) | |
previous_word_idx = word_idx | |
labels.append(label_ids) | |
tokenized_inputs["labels"] = labels | |
return tokenized_inputs | |
processed_raw_datasets = raw_datasets.map( | |
tokenize_and_align_labels, | |
batched=True, | |
remove_columns=raw_datasets["train"].column_names, | |
desc="Running tokenizer on dataset", | |
) | |
train_dataset = processed_raw_datasets["train"] | |
eval_dataset = processed_raw_datasets["validation"] | |
if data_args.max_train_samples is not None: | |
max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
train_dataset = train_dataset.select(range(max_train_samples)) | |
if data_args.max_eval_samples is not None: | |
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) | |
eval_dataset = eval_dataset.select(range(max_eval_samples)) | |
# Log a few random samples from the training set: | |
for index in random.sample(range(len(train_dataset)), 3): | |
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") | |
# endregion | |
with training_args.strategy.scope(): | |
# region Initialize model | |
if model_args.model_name_or_path: | |
model = TFAutoModelForTokenClassification.from_pretrained( | |
model_args.model_name_or_path, | |
config=config, | |
) | |
else: | |
logger.info("Training new model from scratch") | |
model = TFAutoModelForTokenClassification.from_config(config) | |
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch | |
# on a small vocab and want a smaller embedding size, remove this test. | |
embeddings = model.get_input_embeddings() | |
# Matt: This is a temporary workaround as we transition our models to exclusively using Keras embeddings. | |
# As soon as the transition is complete, all embeddings should be keras.Embeddings layers, and | |
# the weights will always be in embeddings.embeddings. | |
if hasattr(embeddings, "embeddings"): | |
embedding_size = embeddings.embeddings.shape[0] | |
else: | |
embedding_size = embeddings.weight.shape[0] | |
if len(tokenizer) > embedding_size: | |
model.resize_token_embeddings(len(tokenizer)) | |
# endregion | |
# region Create TF datasets | |
# We need the DataCollatorForTokenClassification here, as we need to correctly pad labels as | |
# well as inputs. | |
collate_fn = DataCollatorForTokenClassification(tokenizer=tokenizer, return_tensors="np") | |
num_replicas = training_args.strategy.num_replicas_in_sync | |
total_train_batch_size = training_args.per_device_train_batch_size * num_replicas | |
dataset_options = tf.data.Options() | |
dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF | |
# model.prepare_tf_dataset() wraps a Hugging Face dataset in a tf.data.Dataset which is ready to use in | |
# training. This is the recommended way to use a Hugging Face dataset when training with Keras. You can also | |
# use the lower-level dataset.to_tf_dataset() method, but you will have to specify things like column names | |
# yourself if you use this method, whereas they are automatically inferred from the model input names when | |
# using model.prepare_tf_dataset() | |
# For more info see the docs: | |
# https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset | |
# https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset | |
tf_train_dataset = model.prepare_tf_dataset( | |
train_dataset, | |
collate_fn=collate_fn, | |
batch_size=total_train_batch_size, | |
shuffle=True, | |
).with_options(dataset_options) | |
total_eval_batch_size = training_args.per_device_eval_batch_size * num_replicas | |
tf_eval_dataset = model.prepare_tf_dataset( | |
eval_dataset, | |
collate_fn=collate_fn, | |
batch_size=total_eval_batch_size, | |
shuffle=False, | |
).with_options(dataset_options) | |
# endregion | |
# region Optimizer, loss and compilation | |
num_train_steps = int(len(tf_train_dataset) * training_args.num_train_epochs) | |
if training_args.warmup_steps > 0: | |
num_warmup_steps = training_args.warmup_steps | |
elif training_args.warmup_ratio > 0: | |
num_warmup_steps = int(num_train_steps * training_args.warmup_ratio) | |
else: | |
num_warmup_steps = 0 | |
optimizer, lr_schedule = create_optimizer( | |
init_lr=training_args.learning_rate, | |
num_train_steps=num_train_steps, | |
num_warmup_steps=num_warmup_steps, | |
adam_beta1=training_args.adam_beta1, | |
adam_beta2=training_args.adam_beta2, | |
adam_epsilon=training_args.adam_epsilon, | |
weight_decay_rate=training_args.weight_decay, | |
adam_global_clipnorm=training_args.max_grad_norm, | |
) | |
model.compile(optimizer=optimizer, jit_compile=training_args.xla) | |
# endregion | |
# Metrics | |
metric = evaluate.load("seqeval") | |
def get_labels(y_pred, y_true): | |
# Transform predictions and references tensos to numpy arrays | |
# Remove ignored index (special tokens) | |
true_predictions = [ | |
[label_list[p] for (p, l) in zip(pred, gold_label) if l != -100] | |
for pred, gold_label in zip(y_pred, y_true) | |
] | |
true_labels = [ | |
[label_list[l] for (p, l) in zip(pred, gold_label) if l != -100] | |
for pred, gold_label in zip(y_pred, y_true) | |
] | |
return true_predictions, true_labels | |
def compute_metrics(): | |
results = metric.compute() | |
if data_args.return_entity_level_metrics: | |
# Unpack nested dictionaries | |
final_results = {} | |
for key, value in results.items(): | |
if isinstance(value, dict): | |
for n, v in value.items(): | |
final_results[f"{key}_{n}"] = v | |
else: | |
final_results[key] = value | |
return final_results | |
else: | |
return { | |
"precision": results["overall_precision"], | |
"recall": results["overall_recall"], | |
"f1": results["overall_f1"], | |
"accuracy": results["overall_accuracy"], | |
} | |
# endregion | |
# region Preparing push_to_hub and model card | |
push_to_hub_model_id = training_args.push_to_hub_model_id | |
model_name = model_args.model_name_or_path.split("/")[-1] | |
if not push_to_hub_model_id: | |
if data_args.dataset_name is not None: | |
push_to_hub_model_id = f"{model_name}-finetuned-{data_args.dataset_name}" | |
else: | |
push_to_hub_model_id = f"{model_name}-finetuned-token-classification" | |
model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "token-classification"} | |
if data_args.dataset_name is not None: | |
model_card_kwargs["dataset_tags"] = data_args.dataset_name | |
if data_args.dataset_config_name is not None: | |
model_card_kwargs["dataset_args"] = data_args.dataset_config_name | |
model_card_kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" | |
else: | |
model_card_kwargs["dataset"] = data_args.dataset_name | |
if training_args.push_to_hub: | |
callbacks = [ | |
PushToHubCallback( | |
output_dir=training_args.output_dir, | |
hub_model_id=push_to_hub_model_id, | |
hub_token=training_args.push_to_hub_token, | |
tokenizer=tokenizer, | |
**model_card_kwargs, | |
) | |
] | |
else: | |
callbacks = [] | |
# endregion | |
# region Training | |
logger.info("***** Running training *****") | |
logger.info(f" Num examples = {len(train_dataset)}") | |
logger.info(f" Num Epochs = {training_args.num_train_epochs}") | |
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}") | |
logger.info(f" Total train batch size = {total_train_batch_size}") | |
# Only show the progress bar once on each machine. | |
model.fit( | |
tf_train_dataset, | |
validation_data=tf_eval_dataset, | |
epochs=int(training_args.num_train_epochs), | |
callbacks=callbacks, | |
) | |
# endregion | |
# region Predictions | |
# If you have variable batch sizes (i.e. not using pad_to_max_length), then | |
# this bit might fail on TF < 2.8 because TF can't concatenate outputs of varying seq | |
# length from predict(). | |
try: | |
predictions = model.predict(tf_eval_dataset, batch_size=training_args.per_device_eval_batch_size)["logits"] | |
except tf.python.framework.errors_impl.InvalidArgumentError: | |
raise ValueError( | |
"Concatenating predictions failed! If your version of TensorFlow is 2.8.0 or older " | |
"then you will need to use --pad_to_max_length to generate predictions, as older " | |
"versions of TensorFlow cannot concatenate variable-length predictions as RaggedTensor." | |
) | |
if isinstance(predictions, tf.RaggedTensor): | |
predictions = predictions.to_tensor(default_value=-100) | |
predictions = tf.math.argmax(predictions, axis=-1).numpy() | |
if "label" in eval_dataset: | |
labels = eval_dataset.with_format("tf")["label"] | |
else: | |
labels = eval_dataset.with_format("tf")["labels"] | |
if isinstance(labels, tf.RaggedTensor): | |
labels = labels.to_tensor(default_value=-100) | |
labels = labels.numpy() | |
attention_mask = eval_dataset.with_format("tf")["attention_mask"] | |
if isinstance(attention_mask, tf.RaggedTensor): | |
attention_mask = attention_mask.to_tensor(default_value=-100) | |
attention_mask = attention_mask.numpy() | |
labels[attention_mask == 0] = -100 | |
preds, refs = get_labels(predictions, labels) | |
metric.add_batch( | |
predictions=preds, | |
references=refs, | |
) | |
eval_metric = compute_metrics() | |
logger.info("Evaluation metrics:") | |
for key, val in eval_metric.items(): | |
logger.info(f"{key}: {val:.4f}") | |
if training_args.output_dir is not None: | |
output_eval_file = os.path.join(training_args.output_dir, "all_results.json") | |
with open(output_eval_file, "w") as writer: | |
writer.write(json.dumps(eval_metric)) | |
# endregion | |
if training_args.output_dir is not None and not training_args.push_to_hub: | |
# If we're not pushing to hub, at least save a local copy when we're done | |
model.save_pretrained(training_args.output_dir) | |
if __name__ == "__main__": | |
main() | |