Spaces:
Build error
Build error
Wisdom Chen
commited on
Update model.py
Browse files
model.py
CHANGED
@@ -53,19 +53,6 @@ def initialize_models() -> bool:
|
|
53 |
try:
|
54 |
print(f"Initializing models on device: {device}")
|
55 |
|
56 |
-
# Add explicit Hugging Face login with better error handling
|
57 |
-
try:
|
58 |
-
hf_token = st.secrets.HUGGINGFACE_TOKEN
|
59 |
-
if not isinstance(hf_token, str) or not hf_token.startswith('hf_'):
|
60 |
-
raise ValueError("Invalid Hugging Face token format")
|
61 |
-
|
62 |
-
# Validate token before proceeding
|
63 |
-
login(token=hf_token, write_permission=False)
|
64 |
-
print("Successfully authenticated with Hugging Face")
|
65 |
-
|
66 |
-
except Exception as e:
|
67 |
-
raise RuntimeError(f"Hugging Face authentication failed: {str(e)}")
|
68 |
-
|
69 |
# Initialize CLIP model with error handling
|
70 |
try:
|
71 |
clip_model, _, clip_preprocess = open_clip.create_model_and_transforms(
|
@@ -88,22 +75,23 @@ def initialize_models() -> bool:
|
|
88 |
bnb_4bit_quant_type="nf4"
|
89 |
)
|
90 |
|
91 |
-
#
|
|
|
|
|
92 |
llm_tokenizer = AutoTokenizer.from_pretrained(
|
93 |
model_name,
|
94 |
-
|
95 |
-
|
|
|
96 |
)
|
97 |
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
98 |
-
|
99 |
llm_model = AutoModelForCausalLM.from_pretrained(
|
100 |
model_name,
|
101 |
-
use_auth_token=hf_token, # Changed from token to use_auth_token
|
102 |
quantization_config=quantization_config,
|
103 |
-
device_map=
|
104 |
torch_dtype=torch.float16,
|
105 |
-
|
106 |
-
trust_remote_code=True
|
107 |
)
|
108 |
llm_model.eval()
|
109 |
print("LLM initialized successfully")
|
|
|
53 |
try:
|
54 |
print(f"Initializing models on device: {device}")
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
# Initialize CLIP model with error handling
|
57 |
try:
|
58 |
clip_model, _, clip_preprocess = open_clip.create_model_and_transforms(
|
|
|
75 |
bnb_4bit_quant_type="nf4"
|
76 |
)
|
77 |
|
78 |
+
# Get token from Streamlit secrets
|
79 |
+
hf_token = st.secrets["HUGGINGFACE_TOKEN"]
|
80 |
+
|
81 |
llm_tokenizer = AutoTokenizer.from_pretrained(
|
82 |
model_name,
|
83 |
+
padding_side="left",
|
84 |
+
truncation_side="left",
|
85 |
+
token=hf_token # Add token here
|
86 |
)
|
87 |
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
88 |
+
|
89 |
llm_model = AutoModelForCausalLM.from_pretrained(
|
90 |
model_name,
|
|
|
91 |
quantization_config=quantization_config,
|
92 |
+
device_map="auto",
|
93 |
torch_dtype=torch.float16,
|
94 |
+
token=hf_token # Add token here
|
|
|
95 |
)
|
96 |
llm_model.eval()
|
97 |
print("LLM initialized successfully")
|