Spaces:
Build error
Build error
Wisdom Chen
commited on
Update model.py
Browse files
model.py
CHANGED
|
@@ -47,67 +47,10 @@ embeddings_df: Optional[pd.DataFrame] = None
|
|
| 47 |
text_faiss: Optional[object] = None
|
| 48 |
image_faiss: Optional[object] = None
|
| 49 |
|
| 50 |
-
# def initialize_models() -> bool:
|
| 51 |
-
# global clip_model, clip_preprocess, clip_tokenizer, llm_tokenizer, llm_model, device
|
| 52 |
-
|
| 53 |
-
# try:
|
| 54 |
-
# print(f"Initializing models on device: {device}")
|
| 55 |
-
|
| 56 |
-
# # Initialize CLIP model with error handling
|
| 57 |
-
# try:
|
| 58 |
-
# clip_model, _, clip_preprocess = open_clip.create_model_and_transforms(
|
| 59 |
-
# 'hf-hub:Marqo/marqo-fashionCLIP'
|
| 60 |
-
# )
|
| 61 |
-
# clip_model = clip_model.to(device)
|
| 62 |
-
# clip_model.eval()
|
| 63 |
-
# clip_tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionCLIP')
|
| 64 |
-
# print("CLIP model initialized successfully")
|
| 65 |
-
# except Exception as e:
|
| 66 |
-
# raise RuntimeError(f"Failed to initialize CLIP model: {str(e)}")
|
| 67 |
-
|
| 68 |
-
# # Initialize LLM with optimized settings
|
| 69 |
-
# try:
|
| 70 |
-
# model_name = "mistralai/Mistral-7B-v0.1"
|
| 71 |
-
# quantization_config = BitsAndBytesConfig(
|
| 72 |
-
# load_in_4bit=True,
|
| 73 |
-
# bnb_4bit_compute_dtype=torch.float16,
|
| 74 |
-
# bnb_4bit_use_double_quant=True,
|
| 75 |
-
# bnb_4bit_quant_type="nf4"
|
| 76 |
-
# )
|
| 77 |
-
|
| 78 |
-
# # Get token from Streamlit secrets
|
| 79 |
-
# hf_token = st.secrets["HUGGINGFACE_TOKEN"]
|
| 80 |
-
|
| 81 |
-
# llm_tokenizer = AutoTokenizer.from_pretrained(
|
| 82 |
-
# model_name,
|
| 83 |
-
# padding_side="left",
|
| 84 |
-
# truncation_side="left",
|
| 85 |
-
# token=hf_token # Add token here
|
| 86 |
-
# )
|
| 87 |
-
# llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
| 88 |
-
|
| 89 |
-
# llm_model = AutoModelForCausalLM.from_pretrained(
|
| 90 |
-
# model_name,
|
| 91 |
-
# quantization_config=quantization_config,
|
| 92 |
-
# device_map="auto",
|
| 93 |
-
# torch_dtype=torch.float16,
|
| 94 |
-
# token=hf_token # Add token here
|
| 95 |
-
# )
|
| 96 |
-
# llm_model.eval()
|
| 97 |
-
# print("LLM initialized successfully")
|
| 98 |
-
# except Exception as e:
|
| 99 |
-
# raise RuntimeError(f"Failed to initialize LLM: {str(e)}")
|
| 100 |
-
|
| 101 |
-
# return True
|
| 102 |
-
|
| 103 |
-
# except Exception as e:
|
| 104 |
-
# raise RuntimeError(f"Model initialization failed: {str(e)}")
|
| 105 |
-
|
| 106 |
def initialize_models() -> bool:
|
| 107 |
global clip_model, clip_preprocess, clip_tokenizer, llm_tokenizer, llm_model, device
|
| 108 |
|
| 109 |
try:
|
| 110 |
-
device = "cpu" # Force CPU usage for Streamlit Cloud
|
| 111 |
print(f"Initializing models on device: {device}")
|
| 112 |
|
| 113 |
# Initialize CLIP model with error handling
|
|
@@ -122,10 +65,16 @@ def initialize_models() -> bool:
|
|
| 122 |
except Exception as e:
|
| 123 |
raise RuntimeError(f"Failed to initialize CLIP model: {str(e)}")
|
| 124 |
|
| 125 |
-
# Initialize LLM with
|
| 126 |
try:
|
| 127 |
model_name = "mistralai/Mistral-7B-v0.1"
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
# Get token from Streamlit secrets
|
| 130 |
hf_token = st.secrets["HUGGINGFACE_TOKEN"]
|
| 131 |
|
|
@@ -133,15 +82,16 @@ def initialize_models() -> bool:
|
|
| 133 |
model_name,
|
| 134 |
padding_side="left",
|
| 135 |
truncation_side="left",
|
| 136 |
-
token=hf_token
|
| 137 |
)
|
| 138 |
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
| 139 |
|
| 140 |
llm_model = AutoModelForCausalLM.from_pretrained(
|
| 141 |
model_name,
|
|
|
|
| 142 |
device_map="auto",
|
| 143 |
-
|
| 144 |
-
token=hf_token
|
| 145 |
)
|
| 146 |
llm_model.eval()
|
| 147 |
print("LLM initialized successfully")
|
|
|
|
| 47 |
text_faiss: Optional[object] = None
|
| 48 |
image_faiss: Optional[object] = None
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
def initialize_models() -> bool:
|
| 51 |
global clip_model, clip_preprocess, clip_tokenizer, llm_tokenizer, llm_model, device
|
| 52 |
|
| 53 |
try:
|
|
|
|
| 54 |
print(f"Initializing models on device: {device}")
|
| 55 |
|
| 56 |
# Initialize CLIP model with error handling
|
|
|
|
| 65 |
except Exception as e:
|
| 66 |
raise RuntimeError(f"Failed to initialize CLIP model: {str(e)}")
|
| 67 |
|
| 68 |
+
# Initialize LLM with optimized settings
|
| 69 |
try:
|
| 70 |
model_name = "mistralai/Mistral-7B-v0.1"
|
| 71 |
+
quantization_config = BitsAndBytesConfig(
|
| 72 |
+
load_in_4bit=True,
|
| 73 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 74 |
+
bnb_4bit_use_double_quant=True,
|
| 75 |
+
bnb_4bit_quant_type="nf4"
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
# Get token from Streamlit secrets
|
| 79 |
hf_token = st.secrets["HUGGINGFACE_TOKEN"]
|
| 80 |
|
|
|
|
| 82 |
model_name,
|
| 83 |
padding_side="left",
|
| 84 |
truncation_side="left",
|
| 85 |
+
token=hf_token # Add token here
|
| 86 |
)
|
| 87 |
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
| 88 |
|
| 89 |
llm_model = AutoModelForCausalLM.from_pretrained(
|
| 90 |
model_name,
|
| 91 |
+
quantization_config=quantization_config,
|
| 92 |
device_map="auto",
|
| 93 |
+
torch_dtype=torch.float16,
|
| 94 |
+
token=hf_token # Add token here
|
| 95 |
)
|
| 96 |
llm_model.eval()
|
| 97 |
print("LLM initialized successfully")
|