Spaces:
Build error
Build error
Wisdom Chen
commited on
Update model.py
Browse files
model.py
CHANGED
@@ -47,67 +47,10 @@ embeddings_df: Optional[pd.DataFrame] = None
|
|
47 |
text_faiss: Optional[object] = None
|
48 |
image_faiss: Optional[object] = None
|
49 |
|
50 |
-
# def initialize_models() -> bool:
|
51 |
-
# global clip_model, clip_preprocess, clip_tokenizer, llm_tokenizer, llm_model, device
|
52 |
-
|
53 |
-
# try:
|
54 |
-
# print(f"Initializing models on device: {device}")
|
55 |
-
|
56 |
-
# # Initialize CLIP model with error handling
|
57 |
-
# try:
|
58 |
-
# clip_model, _, clip_preprocess = open_clip.create_model_and_transforms(
|
59 |
-
# 'hf-hub:Marqo/marqo-fashionCLIP'
|
60 |
-
# )
|
61 |
-
# clip_model = clip_model.to(device)
|
62 |
-
# clip_model.eval()
|
63 |
-
# clip_tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionCLIP')
|
64 |
-
# print("CLIP model initialized successfully")
|
65 |
-
# except Exception as e:
|
66 |
-
# raise RuntimeError(f"Failed to initialize CLIP model: {str(e)}")
|
67 |
-
|
68 |
-
# # Initialize LLM with optimized settings
|
69 |
-
# try:
|
70 |
-
# model_name = "mistralai/Mistral-7B-v0.1"
|
71 |
-
# quantization_config = BitsAndBytesConfig(
|
72 |
-
# load_in_4bit=True,
|
73 |
-
# bnb_4bit_compute_dtype=torch.float16,
|
74 |
-
# bnb_4bit_use_double_quant=True,
|
75 |
-
# bnb_4bit_quant_type="nf4"
|
76 |
-
# )
|
77 |
-
|
78 |
-
# # Get token from Streamlit secrets
|
79 |
-
# hf_token = st.secrets["HUGGINGFACE_TOKEN"]
|
80 |
-
|
81 |
-
# llm_tokenizer = AutoTokenizer.from_pretrained(
|
82 |
-
# model_name,
|
83 |
-
# padding_side="left",
|
84 |
-
# truncation_side="left",
|
85 |
-
# token=hf_token # Add token here
|
86 |
-
# )
|
87 |
-
# llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
88 |
-
|
89 |
-
# llm_model = AutoModelForCausalLM.from_pretrained(
|
90 |
-
# model_name,
|
91 |
-
# quantization_config=quantization_config,
|
92 |
-
# device_map="auto",
|
93 |
-
# torch_dtype=torch.float16,
|
94 |
-
# token=hf_token # Add token here
|
95 |
-
# )
|
96 |
-
# llm_model.eval()
|
97 |
-
# print("LLM initialized successfully")
|
98 |
-
# except Exception as e:
|
99 |
-
# raise RuntimeError(f"Failed to initialize LLM: {str(e)}")
|
100 |
-
|
101 |
-
# return True
|
102 |
-
|
103 |
-
# except Exception as e:
|
104 |
-
# raise RuntimeError(f"Model initialization failed: {str(e)}")
|
105 |
-
|
106 |
def initialize_models() -> bool:
|
107 |
global clip_model, clip_preprocess, clip_tokenizer, llm_tokenizer, llm_model, device
|
108 |
|
109 |
try:
|
110 |
-
device = "cpu" # Force CPU usage for Streamlit Cloud
|
111 |
print(f"Initializing models on device: {device}")
|
112 |
|
113 |
# Initialize CLIP model with error handling
|
@@ -122,10 +65,16 @@ def initialize_models() -> bool:
|
|
122 |
except Exception as e:
|
123 |
raise RuntimeError(f"Failed to initialize CLIP model: {str(e)}")
|
124 |
|
125 |
-
# Initialize LLM with
|
126 |
try:
|
127 |
model_name = "mistralai/Mistral-7B-v0.1"
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
# Get token from Streamlit secrets
|
130 |
hf_token = st.secrets["HUGGINGFACE_TOKEN"]
|
131 |
|
@@ -133,15 +82,16 @@ def initialize_models() -> bool:
|
|
133 |
model_name,
|
134 |
padding_side="left",
|
135 |
truncation_side="left",
|
136 |
-
token=hf_token
|
137 |
)
|
138 |
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
139 |
|
140 |
llm_model = AutoModelForCausalLM.from_pretrained(
|
141 |
model_name,
|
|
|
142 |
device_map="auto",
|
143 |
-
|
144 |
-
token=hf_token
|
145 |
)
|
146 |
llm_model.eval()
|
147 |
print("LLM initialized successfully")
|
|
|
47 |
text_faiss: Optional[object] = None
|
48 |
image_faiss: Optional[object] = None
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
def initialize_models() -> bool:
|
51 |
global clip_model, clip_preprocess, clip_tokenizer, llm_tokenizer, llm_model, device
|
52 |
|
53 |
try:
|
|
|
54 |
print(f"Initializing models on device: {device}")
|
55 |
|
56 |
# Initialize CLIP model with error handling
|
|
|
65 |
except Exception as e:
|
66 |
raise RuntimeError(f"Failed to initialize CLIP model: {str(e)}")
|
67 |
|
68 |
+
# Initialize LLM with optimized settings
|
69 |
try:
|
70 |
model_name = "mistralai/Mistral-7B-v0.1"
|
71 |
+
quantization_config = BitsAndBytesConfig(
|
72 |
+
load_in_4bit=True,
|
73 |
+
bnb_4bit_compute_dtype=torch.float16,
|
74 |
+
bnb_4bit_use_double_quant=True,
|
75 |
+
bnb_4bit_quant_type="nf4"
|
76 |
+
)
|
77 |
+
|
78 |
# Get token from Streamlit secrets
|
79 |
hf_token = st.secrets["HUGGINGFACE_TOKEN"]
|
80 |
|
|
|
82 |
model_name,
|
83 |
padding_side="left",
|
84 |
truncation_side="left",
|
85 |
+
token=hf_token # Add token here
|
86 |
)
|
87 |
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
88 |
|
89 |
llm_model = AutoModelForCausalLM.from_pretrained(
|
90 |
model_name,
|
91 |
+
quantization_config=quantization_config,
|
92 |
device_map="auto",
|
93 |
+
torch_dtype=torch.float16,
|
94 |
+
token=hf_token # Add token here
|
95 |
)
|
96 |
llm_model.eval()
|
97 |
print("LLM initialized successfully")
|