Spaces:
Sleeping
Sleeping
import gradio as gr | |
from langchain.embeddings import OpenAIEmbeddings | |
from langchain.vectorstores import FAISS | |
import os | |
os.environ["OPENAI_API_KEY"] = os.environ["openai"] | |
embeddings = OpenAIEmbeddings(model="text-embedding-3-large") | |
# Load the vector store | |
vector_store = FAISS.load_local( | |
"yc_index", embeddings, allow_dangerous_deserialization=True | |
) | |
# Create a retriever with the vector store | |
retriever = vector_store.as_retriever(search_type="mmr") | |
# Function to use the retriever on an input query | |
def retrieve_result(query, k=10): | |
retriever.search_kwargs["k"] = k | |
result = retriever.invoke(query) | |
res = [] | |
for r in result: | |
formatted_result = f""" | |
<b>Name</b>: {r.metadata.get('name')}<br> | |
<b>One Liner</b>: {r.metadata.get('oneLiner')}<br> | |
<b>Website</b>: <a href='{r.metadata.get('website')}' target='_blank'>{r.metadata.get('website')}</a><br> | |
<b>Status</b>: {r.metadata.get('status')}<br> | |
<b>Locations</b>: {r.metadata.get('locations')} | |
""" | |
res.append(formatted_result.strip()) | |
return "<br><br>".join(res) | |
# Set up the Gradio UI using Blocks | |
with gr.Blocks() as demo: | |
gr.Markdown("# YCombinator Startups Semantic Search") | |
#gr.Markdown("Enter a query to search the vector store for relevant results about legal tech startups.") | |
with gr.Row(): | |
input_text = gr.Textbox(label="Describe your startup idea") | |
k_value = gr.Number(label="Top K startups", value=5) | |
submit_button = gr.Button("Submit") | |
with gr.Row(): | |
output_text = gr.HTML(label="Result") | |
submit_button.click(fn=lambda query, k: '', inputs=[input_text, k_value], outputs=output_text) | |
submit_button.click(fn=retrieve_result, inputs=[input_text, k_value], outputs=output_text) | |
demo.launch() |