Spaces:
Build error
Build error
import contextlib | |
import gc | |
import os | |
import re | |
import requests | |
import gc | |
import sys | |
from encodec import EncodecModel | |
import funcy | |
import logging | |
import numpy as np | |
from scipy.special import softmax | |
import torch | |
import torch.nn.functional as F | |
import tqdm | |
from transformers import BertTokenizer | |
from huggingface_hub import hf_hub_download, hf_hub_url | |
from .model import GPTConfig, GPT | |
from .model_fine import FineGPT, FineGPTConfig | |
from .settings import initenv | |
initenv(sys.argv) | |
global_force_cpu = os.environ.get("BARK_FORCE_CPU", False) | |
if ( | |
global_force_cpu != True and | |
torch.cuda.is_available() and | |
hasattr(torch.cuda, "amp") and | |
hasattr(torch.cuda.amp, "autocast") and | |
hasattr(torch.cuda, "is_bf16_supported") and | |
torch.cuda.is_bf16_supported() | |
): | |
autocast = funcy.partial(torch.cuda.amp.autocast, dtype=torch.bfloat16) | |
else: | |
def autocast(): | |
yield | |
# hold models in global scope to lazy load | |
global models | |
models = {} | |
global models_devices | |
models_devices = {} | |
CONTEXT_WINDOW_SIZE = 1024 | |
SEMANTIC_RATE_HZ = 49.9 | |
SEMANTIC_VOCAB_SIZE = 10_000 | |
CODEBOOK_SIZE = 1024 | |
N_COARSE_CODEBOOKS = 2 | |
N_FINE_CODEBOOKS = 8 | |
COARSE_RATE_HZ = 75 | |
SAMPLE_RATE = 24_000 | |
SUPPORTED_LANGS = [ | |
("English", "en"), | |
("German", "de"), | |
("Spanish", "es"), | |
("French", "fr"), | |
("Hindi", "hi"), | |
("Italian", "it"), | |
("Japanese", "ja"), | |
("Korean", "ko"), | |
("Polish", "pl"), | |
("Portuguese", "pt"), | |
("Russian", "ru"), | |
("Turkish", "tr"), | |
("Chinese", "zh"), | |
] | |
ALLOWED_PROMPTS = {"announcer"} | |
for _, lang in SUPPORTED_LANGS: | |
for prefix in ("", f"v2{os.path.sep}"): | |
for n in range(10): | |
ALLOWED_PROMPTS.add(f"{prefix}{lang}_speaker_{n}") | |
logger = logging.getLogger(__name__) | |
CUR_PATH = os.path.dirname(os.path.abspath(__file__)) | |
#default_cache_dir = os.path.join(os.path.expanduser("~"), ".cache") | |
#CACHE_DIR = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0") | |
#CACHE_DIR = os.path.join(os.getcwd(), "models" | |
CACHE_DIR = "./models" | |
def _cast_bool_env_var(s): | |
return s.lower() in ('true', '1', 't') | |
USE_SMALL_MODELS = _cast_bool_env_var(os.environ.get("SUNO_USE_SMALL_MODELS", "False")) | |
GLOBAL_ENABLE_MPS = _cast_bool_env_var(os.environ.get("SUNO_ENABLE_MPS", "False")) | |
OFFLOAD_CPU = _cast_bool_env_var(os.environ.get("SUNO_OFFLOAD_CPU", "False")) | |
REMOTE_MODEL_PATHS = { | |
"text_small": { | |
"repo_id": "suno/bark", | |
"file_name": "text.pt", | |
}, | |
"coarse_small": { | |
"repo_id": "suno/bark", | |
"file_name": "coarse.pt", | |
}, | |
"fine_small": { | |
"repo_id": "suno/bark", | |
"file_name": "fine.pt", | |
}, | |
"text": { | |
"repo_id": "suno/bark", | |
"file_name": "text_2.pt", | |
}, | |
"coarse": { | |
"repo_id": "suno/bark", | |
"file_name": "coarse_2.pt", | |
}, | |
"fine": { | |
"repo_id": "suno/bark", | |
"file_name": "fine_2.pt", | |
}, | |
} | |
if not hasattr(torch.nn.functional, 'scaled_dot_product_attention') and torch.cuda.is_available(): | |
logger.warning( | |
"torch version does not support flash attention. You will get faster" + | |
" inference speed by upgrade torch to newest nightly version." | |
) | |
def grab_best_device(use_gpu=True): | |
if torch.cuda.device_count() > 0 and use_gpu: | |
device = "cuda" | |
elif torch.backends.mps.is_available() and use_gpu and GLOBAL_ENABLE_MPS: | |
device = "mps" | |
else: | |
device = "cpu" | |
return device | |
def _get_ckpt_path(model_type, use_small=False): | |
key = model_type | |
if use_small or USE_SMALL_MODELS: | |
key += "_small" | |
return os.path.join(CACHE_DIR, REMOTE_MODEL_PATHS[key]["file_name"]) | |
""" | |
def _download(from_hf_path, file_name, destfilename): | |
os.makedirs(CACHE_DIR, exist_ok=True) | |
hf_hub_download(repo_id=from_hf_path, filename=file_name, local_dir=CACHE_DIR, local_dir_use_symlinks=False) | |
# Bug in original repo? Downloaded name differs from expected... | |
if not os.path.exists(destfilename): | |
localname = os.path.join(CACHE_DIR, file_name) | |
os.rename(localname, destfilename) | |
""" | |
def _download(from_hf_path, file_name): | |
os.makedirs(CACHE_DIR, exist_ok=True) | |
hf_hub_download(repo_id=from_hf_path, filename=file_name, local_dir=CACHE_DIR) | |
class InferenceContext: | |
def __init__(self, benchmark=False): | |
# we can't expect inputs to be the same length, so disable benchmarking by default | |
self._chosen_cudnn_benchmark = benchmark | |
self._cudnn_benchmark = None | |
def __enter__(self): | |
self._cudnn_benchmark = torch.backends.cudnn.benchmark | |
torch.backends.cudnn.benchmark = self._chosen_cudnn_benchmark | |
def __exit__(self, exc_type, exc_value, exc_traceback): | |
torch.backends.cudnn.benchmark = self._cudnn_benchmark | |
if torch.cuda.is_available(): | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
def _inference_mode(): | |
with InferenceContext(), torch.inference_mode(), torch.no_grad(), autocast(): | |
yield | |
def _clear_cuda_cache(): | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
torch.cuda.synchronize() | |
def clean_models(model_key=None): | |
global models | |
model_keys = [model_key] if model_key is not None else models.keys() | |
for k in model_keys: | |
if k in models: | |
del models[k] | |
_clear_cuda_cache() | |
gc.collect() | |
def _load_model(ckpt_path, device, use_small=False, model_type="text"): | |
if model_type == "text": | |
ConfigClass = GPTConfig | |
ModelClass = GPT | |
elif model_type == "coarse": | |
ConfigClass = GPTConfig | |
ModelClass = GPT | |
elif model_type == "fine": | |
ConfigClass = FineGPTConfig | |
ModelClass = FineGPT | |
else: | |
raise NotImplementedError() | |
# Force-remove Models to allow running on >12Gb GPU | |
# CF: Probably not needed anymore | |
#global models | |
#models.clear() | |
#gc.collect() | |
#torch.cuda.empty_cache() | |
# to here... | |
model_key = f"{model_type}_small" if use_small or USE_SMALL_MODELS else model_type | |
model_info = REMOTE_MODEL_PATHS[model_key] | |
if not os.path.exists(ckpt_path): | |
logger.info(f"{model_type} model not found, downloading into `{CACHE_DIR}`.") | |
## added next two lines to make it super clear which model is being downloaded | |
remote_filename = hf_hub_url(model_info["repo_id"], model_info["file_name"]) | |
print(f"Downloading {model_key} {model_info['repo_id']} remote model file {remote_filename} {model_info['file_name']} to {CACHE_DIR}") | |
_download(model_info["repo_id"], model_info["file_name"]) | |
# add next line to make it super clear which model is being loaded | |
print(f"Loading {model_key} model from {ckpt_path} to {device}") # added | |
checkpoint = torch.load(ckpt_path, map_location=device) | |
# this is a hack | |
model_args = checkpoint["model_args"] | |
if "input_vocab_size" not in model_args: | |
model_args["input_vocab_size"] = model_args["vocab_size"] | |
model_args["output_vocab_size"] = model_args["vocab_size"] | |
del model_args["vocab_size"] | |
gptconf = ConfigClass(**checkpoint["model_args"]) | |
model = ModelClass(gptconf) | |
state_dict = checkpoint["model"] | |
# fixup checkpoint | |
unwanted_prefix = "_orig_mod." | |
for k, v in list(state_dict.items()): | |
if k.startswith(unwanted_prefix): | |
state_dict[k[len(unwanted_prefix) :]] = state_dict.pop(k) | |
extra_keys = set(state_dict.keys()) - set(model.state_dict().keys()) | |
extra_keys = set([k for k in extra_keys if not k.endswith(".attn.bias")]) | |
missing_keys = set(model.state_dict().keys()) - set(state_dict.keys()) | |
missing_keys = set([k for k in missing_keys if not k.endswith(".attn.bias")]) | |
if len(extra_keys) != 0: | |
raise ValueError(f"extra keys found: {extra_keys}") | |
if len(missing_keys) != 0: | |
raise ValueError(f"missing keys: {missing_keys}") | |
model.load_state_dict(state_dict, strict=False) | |
n_params = model.get_num_params() | |
val_loss = checkpoint["best_val_loss"].item() | |
logger.info(f"model loaded: {round(n_params/1e6,1)}M params, {round(val_loss,3)} loss") | |
model.eval() | |
model.to(device) | |
del checkpoint, state_dict | |
_clear_cuda_cache() | |
if model_type == "text": | |
tokenizer = BertTokenizer.from_pretrained("bert-base-multilingual-cased") | |
return { | |
"model": model, | |
"tokenizer": tokenizer, | |
} | |
return model | |
def _load_codec_model(device): | |
model = EncodecModel.encodec_model_24khz() | |
model.set_target_bandwidth(6.0) | |
model.eval() | |
model.to(device) | |
_clear_cuda_cache() | |
return model | |
def load_model(use_gpu=True, use_small=False, force_reload=False, model_type="text"): | |
_load_model_f = funcy.partial(_load_model, model_type=model_type, use_small=use_small) | |
if model_type not in ("text", "coarse", "fine"): | |
raise NotImplementedError() | |
global models | |
global models_devices | |
device = grab_best_device(use_gpu=use_gpu) | |
model_key = f"{model_type}" | |
if OFFLOAD_CPU: | |
models_devices[model_key] = device | |
device = "cpu" | |
if model_key not in models or force_reload: | |
ckpt_path = _get_ckpt_path(model_type, use_small=use_small) | |
clean_models(model_key=model_key) | |
model = _load_model_f(ckpt_path, device) | |
models[model_key] = model | |
if model_type == "text": | |
models[model_key]["model"].to(device) | |
else: | |
models[model_key].to(device) | |
return models[model_key] | |
def load_codec_model(use_gpu=True, force_reload=False): | |
global models | |
global models_devices | |
device = grab_best_device(use_gpu=use_gpu) | |
if device == "mps": | |
# encodec doesn't support mps | |
device = "cpu" | |
model_key = "codec" | |
if OFFLOAD_CPU: | |
models_devices[model_key] = device | |
device = "cpu" | |
if model_key not in models or force_reload: | |
clean_models(model_key=model_key) | |
model = _load_codec_model(device) | |
models[model_key] = model | |
models[model_key].to(device) | |
return models[model_key] | |
def preload_models( | |
text_use_gpu=True, | |
text_use_small=False, | |
coarse_use_gpu=True, | |
coarse_use_small=False, | |
fine_use_gpu=True, | |
fine_use_small=False, | |
codec_use_gpu=True, | |
force_reload=False | |
): | |
"""Load all the necessary models for the pipeline.""" | |
if grab_best_device() == "cpu" and ( | |
text_use_gpu or coarse_use_gpu or fine_use_gpu or codec_use_gpu | |
): | |
logger.warning("No GPU being used. Careful, inference might be very slow!") | |
_ = load_model( | |
model_type="text", use_gpu=text_use_gpu, use_small=text_use_small, force_reload=force_reload | |
) | |
_ = load_model( | |
model_type="coarse", | |
use_gpu=coarse_use_gpu, | |
use_small=coarse_use_small, | |
force_reload=force_reload, | |
) | |
_ = load_model( | |
model_type="fine", use_gpu=fine_use_gpu, use_small=fine_use_small, force_reload=force_reload | |
) | |
_ = load_codec_model(use_gpu=codec_use_gpu, force_reload=force_reload) | |
#### | |
# Generation Functionality | |
#### | |
def _tokenize(tokenizer, text): | |
return tokenizer.encode(text, add_special_tokens=False) | |
def _detokenize(tokenizer, enc_text): | |
return tokenizer.decode(enc_text) | |
def _normalize_whitespace(text): | |
return re.sub(r"\s+", " ", text).strip() | |
TEXT_ENCODING_OFFSET = 10_048 | |
SEMANTIC_PAD_TOKEN = 10_000 | |
TEXT_PAD_TOKEN = 129_595 | |
SEMANTIC_INFER_TOKEN = 129_599 | |
def _load_history_prompt(history_prompt_input): | |
if isinstance(history_prompt_input, str) and history_prompt_input.endswith(".npz"): | |
history_prompt = np.load(history_prompt_input) | |
elif isinstance(history_prompt_input, str): | |
# make sure this works on non-ubuntu | |
history_prompt_input = os.path.join(*history_prompt_input.split("/")) | |
# if history_prompt_input not in ALLOWED_PROMPTS: | |
# raise ValueError("history prompt not found") | |
history_prompt = np.load( | |
os.path.join(CUR_PATH, "assets", "prompts", f"{history_prompt_input}.npz") | |
) | |
elif isinstance(history_prompt_input, dict): | |
assert("semantic_prompt" in history_prompt_input) | |
assert("coarse_prompt" in history_prompt_input) | |
assert("fine_prompt" in history_prompt_input) | |
history_prompt = history_prompt_input | |
else: | |
raise ValueError("history prompt format unrecognized") | |
return history_prompt | |
def generate_text_semantic( | |
text, | |
history_prompt=None, | |
temp=0.7, | |
top_k=None, | |
top_p=None, | |
silent=False, | |
min_eos_p=0.2, | |
max_gen_duration_s=None, | |
allow_early_stop=True, | |
use_kv_caching=False, | |
): | |
"""Generate semantic tokens from text.""" | |
assert isinstance(text, str) | |
text = _normalize_whitespace(text) | |
assert len(text.strip()) > 0 | |
if history_prompt is not None: | |
history_prompt = _load_history_prompt(history_prompt) | |
semantic_history = history_prompt["semantic_prompt"] | |
assert ( | |
isinstance(semantic_history, np.ndarray) | |
and len(semantic_history.shape) == 1 | |
and len(semantic_history) > 0 | |
and semantic_history.min() >= 0 | |
and semantic_history.max() <= SEMANTIC_VOCAB_SIZE - 1 | |
) | |
else: | |
semantic_history = None | |
# load models if not yet exist | |
global models | |
global models_devices | |
if "text" not in models: | |
preload_models() | |
model_container = models["text"] | |
model = model_container["model"] | |
tokenizer = model_container["tokenizer"] | |
encoded_text = np.array(_tokenize(tokenizer, text)) + TEXT_ENCODING_OFFSET | |
if OFFLOAD_CPU: | |
model.to(models_devices["text"]) | |
device = next(model.parameters()).device | |
if len(encoded_text) > 256: | |
p = round((len(encoded_text) - 256) / len(encoded_text) * 100, 1) | |
logger.warning(f"warning, text too long, lopping of last {p}%") | |
encoded_text = encoded_text[:256] | |
encoded_text = np.pad( | |
encoded_text, | |
(0, 256 - len(encoded_text)), | |
constant_values=TEXT_PAD_TOKEN, | |
mode="constant", | |
) | |
if semantic_history is not None: | |
semantic_history = semantic_history.astype(np.int64) | |
# lop off if history is too long, pad if needed | |
semantic_history = semantic_history[-256:] | |
semantic_history = np.pad( | |
semantic_history, | |
(0, 256 - len(semantic_history)), | |
constant_values=SEMANTIC_PAD_TOKEN, | |
mode="constant", | |
) | |
else: | |
semantic_history = np.array([SEMANTIC_PAD_TOKEN] * 256) | |
x = torch.from_numpy( | |
np.hstack([ | |
encoded_text, semantic_history, np.array([SEMANTIC_INFER_TOKEN]) | |
]).astype(np.int64) | |
)[None] | |
assert x.shape[1] == 256 + 256 + 1 | |
with _inference_mode(): | |
x = x.to(device) | |
n_tot_steps = 768 | |
# custom tqdm updates since we don't know when eos will occur | |
pbar = tqdm.tqdm(disable=silent, total=100) | |
pbar_state = 0 | |
tot_generated_duration_s = 0 | |
kv_cache = None | |
for n in range(n_tot_steps): | |
if use_kv_caching and kv_cache is not None: | |
x_input = x[:, [-1]] | |
else: | |
x_input = x | |
logits, kv_cache = model( | |
x_input, merge_context=True, use_cache=use_kv_caching, past_kv=kv_cache | |
) | |
relevant_logits = logits[0, 0, :SEMANTIC_VOCAB_SIZE] | |
if allow_early_stop: | |
relevant_logits = torch.hstack( | |
(relevant_logits, logits[0, 0, [SEMANTIC_PAD_TOKEN]]) # eos | |
) | |
if top_p is not None: | |
# faster to convert to numpy | |
original_device = relevant_logits.device | |
relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy() | |
sorted_indices = np.argsort(relevant_logits)[::-1] | |
sorted_logits = relevant_logits[sorted_indices] | |
cumulative_probs = np.cumsum(softmax(sorted_logits)) | |
sorted_indices_to_remove = cumulative_probs > top_p | |
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy() | |
sorted_indices_to_remove[0] = False | |
relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf | |
relevant_logits = torch.from_numpy(relevant_logits) | |
relevant_logits = relevant_logits.to(original_device) | |
if top_k is not None: | |
v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1))) | |
relevant_logits[relevant_logits < v[-1]] = -float("Inf") | |
probs = F.softmax(relevant_logits / temp, dim=-1) | |
# multinomial bugged on mps: shuttle to cpu if necessary | |
inf_device = probs.device | |
if probs.device.type == "mps": | |
probs = probs.to("cpu") | |
item_next = torch.multinomial(probs, num_samples=1) | |
probs = probs.to(inf_device) | |
item_next = item_next.to(inf_device) | |
if allow_early_stop and ( | |
item_next == SEMANTIC_VOCAB_SIZE | |
or (min_eos_p is not None and probs[-1] >= min_eos_p) | |
): | |
# eos found, so break | |
pbar.update(100 - pbar_state) | |
break | |
x = torch.cat((x, item_next[None]), dim=1) | |
tot_generated_duration_s += 1 / SEMANTIC_RATE_HZ | |
if max_gen_duration_s is not None and tot_generated_duration_s > max_gen_duration_s: | |
pbar.update(100 - pbar_state) | |
break | |
if n == n_tot_steps - 1: | |
pbar.update(100 - pbar_state) | |
break | |
del logits, relevant_logits, probs, item_next | |
req_pbar_state = np.min([100, int(round(100 * n / n_tot_steps))]) | |
if req_pbar_state > pbar_state: | |
pbar.update(req_pbar_state - pbar_state) | |
pbar_state = req_pbar_state | |
pbar.close() | |
out = x.detach().cpu().numpy().squeeze()[256 + 256 + 1 :] | |
if OFFLOAD_CPU: | |
model.to("cpu") | |
assert all(0 <= out) and all(out < SEMANTIC_VOCAB_SIZE) | |
_clear_cuda_cache() | |
return out | |
def _flatten_codebooks(arr, offset_size=CODEBOOK_SIZE): | |
assert len(arr.shape) == 2 | |
arr = arr.copy() | |
if offset_size is not None: | |
for n in range(1, arr.shape[0]): | |
arr[n, :] += offset_size * n | |
flat_arr = arr.ravel("F") | |
return flat_arr | |
COARSE_SEMANTIC_PAD_TOKEN = 12_048 | |
COARSE_INFER_TOKEN = 12_050 | |
def generate_coarse( | |
x_semantic, | |
history_prompt=None, | |
temp=0.7, | |
top_k=None, | |
top_p=None, | |
silent=False, | |
max_coarse_history=630, # min 60 (faster), max 630 (more context) | |
sliding_window_len=60, | |
use_kv_caching=False, | |
): | |
"""Generate coarse audio codes from semantic tokens.""" | |
# CF: Uncommented because it breaks swap voice more than once | |
# assert ( | |
# isinstance(x_semantic, np.ndarray) | |
# and len(x_semantic.shape) == 1 | |
# and len(x_semantic) > 0 | |
# and x_semantic.min() >= 0 | |
# and x_semantic.max() <= SEMANTIC_VOCAB_SIZE - 1 | |
# ) | |
assert 60 <= max_coarse_history <= 630 | |
assert max_coarse_history + sliding_window_len <= 1024 - 256 | |
semantic_to_coarse_ratio = COARSE_RATE_HZ / SEMANTIC_RATE_HZ * N_COARSE_CODEBOOKS | |
max_semantic_history = int(np.floor(max_coarse_history / semantic_to_coarse_ratio)) | |
if history_prompt is not None: | |
history_prompt = _load_history_prompt(history_prompt) | |
x_semantic_history = history_prompt["semantic_prompt"] | |
x_coarse_history = history_prompt["coarse_prompt"] | |
assert ( | |
isinstance(x_semantic_history, np.ndarray) | |
and len(x_semantic_history.shape) == 1 | |
and len(x_semantic_history) > 0 | |
and x_semantic_history.min() >= 0 | |
and x_semantic_history.max() <= SEMANTIC_VOCAB_SIZE - 1 | |
and isinstance(x_coarse_history, np.ndarray) | |
and len(x_coarse_history.shape) == 2 | |
and x_coarse_history.shape[0] == N_COARSE_CODEBOOKS | |
and x_coarse_history.shape[-1] >= 0 | |
and x_coarse_history.min() >= 0 | |
and x_coarse_history.max() <= CODEBOOK_SIZE - 1 | |
#and ( | |
# round(x_coarse_history.shape[-1] / len(x_semantic_history), 1) | |
# == round(semantic_to_coarse_ratio / N_COARSE_CODEBOOKS, 1) | |
#) | |
) | |
x_coarse_history = _flatten_codebooks(x_coarse_history) + SEMANTIC_VOCAB_SIZE | |
# trim histories correctly | |
n_semantic_hist_provided = np.min( | |
[ | |
max_semantic_history, | |
len(x_semantic_history) - len(x_semantic_history) % 2, | |
int(np.floor(len(x_coarse_history) / semantic_to_coarse_ratio)), | |
] | |
) | |
n_coarse_hist_provided = int(round(n_semantic_hist_provided * semantic_to_coarse_ratio)) | |
x_semantic_history = x_semantic_history[-n_semantic_hist_provided:].astype(np.int32) | |
x_coarse_history = x_coarse_history[-n_coarse_hist_provided:].astype(np.int32) | |
# TODO: bit of a hack for time alignment (sounds better) | |
x_coarse_history = x_coarse_history[:-2] | |
else: | |
x_semantic_history = np.array([], dtype=np.int32) | |
x_coarse_history = np.array([], dtype=np.int32) | |
# load models if not yet exist | |
global models | |
global models_devices | |
if "coarse" not in models: | |
preload_models() | |
model = models["coarse"] | |
if OFFLOAD_CPU: | |
model.to(models_devices["coarse"]) | |
device = next(model.parameters()).device | |
# start loop | |
n_steps = int( | |
round( | |
np.floor(len(x_semantic) * semantic_to_coarse_ratio / N_COARSE_CODEBOOKS) | |
* N_COARSE_CODEBOOKS | |
) | |
) | |
assert n_steps > 0 and n_steps % N_COARSE_CODEBOOKS == 0 | |
x_semantic = np.hstack([x_semantic_history, x_semantic]).astype(np.int32) | |
x_coarse = x_coarse_history.astype(np.int32) | |
base_semantic_idx = len(x_semantic_history) | |
with _inference_mode(): | |
x_semantic_in = torch.from_numpy(x_semantic)[None].to(device) | |
x_coarse_in = torch.from_numpy(x_coarse)[None].to(device) | |
n_window_steps = int(np.ceil(n_steps / sliding_window_len)) | |
n_step = 0 | |
for _ in tqdm.tqdm(range(n_window_steps), total=n_window_steps, disable=silent): | |
semantic_idx = base_semantic_idx + int(round(n_step / semantic_to_coarse_ratio)) | |
# pad from right side | |
x_in = x_semantic_in[:, np.max([0, semantic_idx - max_semantic_history]) :] | |
x_in = x_in[:, :256] | |
x_in = F.pad( | |
x_in, | |
(0, 256 - x_in.shape[-1]), | |
"constant", | |
COARSE_SEMANTIC_PAD_TOKEN, | |
) | |
x_in = torch.hstack( | |
[ | |
x_in, | |
torch.tensor([COARSE_INFER_TOKEN])[None].to(device), | |
x_coarse_in[:, -max_coarse_history:], | |
] | |
) | |
kv_cache = None | |
for _ in range(sliding_window_len): | |
if n_step >= n_steps: | |
continue | |
is_major_step = n_step % N_COARSE_CODEBOOKS == 0 | |
if use_kv_caching and kv_cache is not None: | |
x_input = x_in[:, [-1]] | |
else: | |
x_input = x_in | |
logits, kv_cache = model(x_input, use_cache=use_kv_caching, past_kv=kv_cache) | |
logit_start_idx = ( | |
SEMANTIC_VOCAB_SIZE + (1 - int(is_major_step)) * CODEBOOK_SIZE | |
) | |
logit_end_idx = ( | |
SEMANTIC_VOCAB_SIZE + (2 - int(is_major_step)) * CODEBOOK_SIZE | |
) | |
relevant_logits = logits[0, 0, logit_start_idx:logit_end_idx] | |
if top_p is not None: | |
# faster to convert to numpy | |
original_device = relevant_logits.device | |
relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy() | |
sorted_indices = np.argsort(relevant_logits)[::-1] | |
sorted_logits = relevant_logits[sorted_indices] | |
cumulative_probs = np.cumsum(softmax(sorted_logits)) | |
sorted_indices_to_remove = cumulative_probs > top_p | |
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy() | |
sorted_indices_to_remove[0] = False | |
relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf | |
relevant_logits = torch.from_numpy(relevant_logits) | |
relevant_logits = relevant_logits.to(original_device) | |
if top_k is not None: | |
v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1))) | |
relevant_logits[relevant_logits < v[-1]] = -float("Inf") | |
probs = F.softmax(relevant_logits / temp, dim=-1) | |
# multinomial bugged on mps: shuttle to cpu if necessary | |
inf_device = probs.device | |
if probs.device.type == "mps": | |
probs = probs.to("cpu") | |
item_next = torch.multinomial(probs, num_samples=1) | |
probs = probs.to(inf_device) | |
item_next = item_next.to(inf_device) | |
item_next += logit_start_idx | |
x_coarse_in = torch.cat((x_coarse_in, item_next[None]), dim=1) | |
x_in = torch.cat((x_in, item_next[None]), dim=1) | |
del logits, relevant_logits, probs, item_next | |
n_step += 1 | |
del x_in | |
del x_semantic_in | |
if OFFLOAD_CPU: | |
model.to("cpu") | |
gen_coarse_arr = x_coarse_in.detach().cpu().numpy().squeeze()[len(x_coarse_history) :] | |
del x_coarse_in | |
assert len(gen_coarse_arr) == n_steps | |
gen_coarse_audio_arr = gen_coarse_arr.reshape(-1, N_COARSE_CODEBOOKS).T - SEMANTIC_VOCAB_SIZE | |
for n in range(1, N_COARSE_CODEBOOKS): | |
gen_coarse_audio_arr[n, :] -= n * CODEBOOK_SIZE | |
_clear_cuda_cache() | |
return gen_coarse_audio_arr | |
def generate_fine( | |
x_coarse_gen, | |
history_prompt=None, | |
temp=0.5, | |
silent=True, | |
): | |
"""Generate full audio codes from coarse audio codes.""" | |
assert ( | |
isinstance(x_coarse_gen, np.ndarray) | |
and len(x_coarse_gen.shape) == 2 | |
and 1 <= x_coarse_gen.shape[0] <= N_FINE_CODEBOOKS - 1 | |
and x_coarse_gen.shape[1] > 0 | |
and x_coarse_gen.min() >= 0 | |
and x_coarse_gen.max() <= CODEBOOK_SIZE - 1 | |
) | |
if history_prompt is not None: | |
history_prompt = _load_history_prompt(history_prompt) | |
x_fine_history = history_prompt["fine_prompt"] | |
assert ( | |
isinstance(x_fine_history, np.ndarray) | |
and len(x_fine_history.shape) == 2 | |
and x_fine_history.shape[0] == N_FINE_CODEBOOKS | |
and x_fine_history.shape[1] >= 0 | |
and x_fine_history.min() >= 0 | |
and x_fine_history.max() <= CODEBOOK_SIZE - 1 | |
) | |
else: | |
x_fine_history = None | |
n_coarse = x_coarse_gen.shape[0] | |
# load models if not yet exist | |
global models | |
global models_devices | |
if "fine" not in models: | |
preload_models() | |
model = models["fine"] | |
if OFFLOAD_CPU: | |
model.to(models_devices["fine"]) | |
device = next(model.parameters()).device | |
# make input arr | |
in_arr = np.vstack( | |
[ | |
x_coarse_gen, | |
np.zeros((N_FINE_CODEBOOKS - n_coarse, x_coarse_gen.shape[1])) | |
+ CODEBOOK_SIZE, # padding | |
] | |
).astype(np.int32) | |
# prepend history if available (max 512) | |
if x_fine_history is not None: | |
x_fine_history = x_fine_history.astype(np.int32) | |
in_arr = np.hstack( | |
[ | |
x_fine_history[:, -512:].astype(np.int32), | |
in_arr, | |
] | |
) | |
n_history = x_fine_history[:, -512:].shape[1] | |
else: | |
n_history = 0 | |
n_remove_from_end = 0 | |
# need to pad if too short (since non-causal model) | |
if in_arr.shape[1] < 1024: | |
n_remove_from_end = 1024 - in_arr.shape[1] | |
in_arr = np.hstack( | |
[ | |
in_arr, | |
np.zeros((N_FINE_CODEBOOKS, n_remove_from_end), dtype=np.int32) + CODEBOOK_SIZE, | |
] | |
) | |
# we can be lazy about fractional loop and just keep overwriting codebooks | |
n_loops = np.max([0, int(np.ceil((x_coarse_gen.shape[1] - (1024 - n_history)) / 512))]) + 1 | |
with _inference_mode(): | |
in_arr = torch.tensor(in_arr.T).to(device) | |
for n in tqdm.tqdm(range(n_loops), disable=silent): | |
start_idx = np.min([n * 512, in_arr.shape[0] - 1024]) | |
start_fill_idx = np.min([n_history + n * 512, in_arr.shape[0] - 512]) | |
rel_start_fill_idx = start_fill_idx - start_idx | |
in_buffer = in_arr[start_idx : start_idx + 1024, :][None] | |
for nn in range(n_coarse, N_FINE_CODEBOOKS): | |
logits = model(nn, in_buffer) | |
if temp is None: | |
relevant_logits = logits[0, rel_start_fill_idx:, :CODEBOOK_SIZE] | |
codebook_preds = torch.argmax(relevant_logits, -1) | |
else: | |
relevant_logits = logits[0, :, :CODEBOOK_SIZE] / temp | |
probs = F.softmax(relevant_logits, dim=-1) | |
# multinomial bugged on mps: shuttle to cpu if necessary | |
inf_device = probs.device | |
if probs.device.type == "mps": | |
probs = probs.to("cpu") | |
codebook_preds = torch.hstack( | |
[ | |
torch.multinomial(probs[nnn], num_samples=1).to(inf_device) | |
for nnn in range(rel_start_fill_idx, 1024) | |
] | |
) | |
in_buffer[0, rel_start_fill_idx:, nn] = codebook_preds | |
del logits, codebook_preds | |
# transfer over info into model_in and convert to numpy | |
for nn in range(n_coarse, N_FINE_CODEBOOKS): | |
in_arr[ | |
start_fill_idx : start_fill_idx + (1024 - rel_start_fill_idx), nn | |
] = in_buffer[0, rel_start_fill_idx:, nn] | |
del in_buffer | |
gen_fine_arr = in_arr.detach().cpu().numpy().squeeze().T | |
del in_arr | |
if OFFLOAD_CPU: | |
model.to("cpu") | |
gen_fine_arr = gen_fine_arr[:, n_history:] | |
if n_remove_from_end > 0: | |
gen_fine_arr = gen_fine_arr[:, :-n_remove_from_end] | |
assert gen_fine_arr.shape[-1] == x_coarse_gen.shape[-1] | |
_clear_cuda_cache() | |
return gen_fine_arr | |
def codec_decode(fine_tokens): | |
"""Turn quantized audio codes into audio array using encodec.""" | |
# load models if not yet exist | |
global models | |
global models_devices | |
if "codec" not in models: | |
preload_models() | |
model = models["codec"] | |
if OFFLOAD_CPU: | |
model.to(models_devices["codec"]) | |
device = next(model.parameters()).device | |
arr = torch.from_numpy(fine_tokens)[None] | |
arr = arr.to(device) | |
arr = arr.transpose(0, 1) | |
emb = model.quantizer.decode(arr) | |
out = model.decoder(emb) | |
audio_arr = out.detach().cpu().numpy().squeeze() | |
del arr, emb, out | |
if OFFLOAD_CPU: | |
model.to("cpu") | |
return audio_arr | |