Spaces:
Runtime error
Runtime error
| # Ultralytics YOLO 🚀, AGPL-3.0 license | |
| """ | |
| Benchmark a YOLO model formats for speed and accuracy. | |
| Usage: | |
| from ultralytics.utils.benchmarks import ProfileModels, benchmark | |
| ProfileModels(['yolov8n.yaml', 'yolov8s.yaml']).profile() | |
| benchmark(model='yolov8n.pt', imgsz=160) | |
| Format | `format=argument` | Model | |
| --- | --- | --- | |
| PyTorch | - | yolov8n.pt | |
| TorchScript | `torchscript` | yolov8n.torchscript | |
| ONNX | `onnx` | yolov8n.onnx | |
| OpenVINO | `openvino` | yolov8n_openvino_model/ | |
| TensorRT | `engine` | yolov8n.engine | |
| CoreML | `coreml` | yolov8n.mlpackage | |
| TensorFlow SavedModel | `saved_model` | yolov8n_saved_model/ | |
| TensorFlow GraphDef | `pb` | yolov8n.pb | |
| TensorFlow Lite | `tflite` | yolov8n.tflite | |
| TensorFlow Edge TPU | `edgetpu` | yolov8n_edgetpu.tflite | |
| TensorFlow.js | `tfjs` | yolov8n_web_model/ | |
| PaddlePaddle | `paddle` | yolov8n_paddle_model/ | |
| ncnn | `ncnn` | yolov8n_ncnn_model/ | |
| """ | |
| import glob | |
| import platform | |
| import sys | |
| import time | |
| from pathlib import Path | |
| import numpy as np | |
| import torch.cuda | |
| from ultralytics import YOLO | |
| from ultralytics.cfg import TASK2DATA, TASK2METRIC | |
| from ultralytics.engine.exporter import export_formats | |
| from ultralytics.utils import ASSETS, LINUX, LOGGER, MACOS, TQDM, WEIGHTS_DIR | |
| from ultralytics.utils.checks import check_requirements, check_yolo | |
| from ultralytics.utils.files import file_size | |
| from ultralytics.utils.torch_utils import select_device | |
| def benchmark(model=WEIGHTS_DIR / 'yolov8n.pt', | |
| data=None, | |
| imgsz=160, | |
| half=False, | |
| int8=False, | |
| device='cpu', | |
| verbose=False): | |
| """ | |
| Benchmark a YOLO model across different formats for speed and accuracy. | |
| Args: | |
| model (str | Path | optional): Path to the model file or directory. Default is | |
| Path(SETTINGS['weights_dir']) / 'yolov8n.pt'. | |
| data (str, optional): Dataset to evaluate on, inherited from TASK2DATA if not passed. Default is None. | |
| imgsz (int, optional): Image size for the benchmark. Default is 160. | |
| half (bool, optional): Use half-precision for the model if True. Default is False. | |
| int8 (bool, optional): Use int8-precision for the model if True. Default is False. | |
| device (str, optional): Device to run the benchmark on, either 'cpu' or 'cuda'. Default is 'cpu'. | |
| verbose (bool | float | optional): If True or a float, assert benchmarks pass with given metric. | |
| Default is False. | |
| Returns: | |
| df (pandas.DataFrame): A pandas DataFrame with benchmark results for each format, including file size, | |
| metric, and inference time. | |
| Example: | |
| ```python | |
| from ultralytics.utils.benchmarks import benchmark | |
| benchmark(model='yolov8n.pt', imgsz=640) | |
| ``` | |
| """ | |
| import pandas as pd | |
| pd.options.display.max_columns = 10 | |
| pd.options.display.width = 120 | |
| device = select_device(device, verbose=False) | |
| if isinstance(model, (str, Path)): | |
| model = YOLO(model) | |
| y = [] | |
| t0 = time.time() | |
| for i, (name, format, suffix, cpu, gpu) in export_formats().iterrows(): # index, (name, format, suffix, CPU, GPU) | |
| emoji, filename = '❌', None # export defaults | |
| try: | |
| assert i != 9 or LINUX, 'Edge TPU export only supported on Linux' | |
| if i == 10: | |
| assert MACOS or LINUX, 'TF.js export only supported on macOS and Linux' | |
| elif i == 11: | |
| assert sys.version_info < (3, 11), 'PaddlePaddle export only supported on Python<=3.10' | |
| if 'cpu' in device.type: | |
| assert cpu, 'inference not supported on CPU' | |
| if 'cuda' in device.type: | |
| assert gpu, 'inference not supported on GPU' | |
| # Export | |
| if format == '-': | |
| filename = model.ckpt_path or model.cfg | |
| exported_model = model # PyTorch format | |
| else: | |
| filename = model.export(imgsz=imgsz, format=format, half=half, int8=int8, device=device, verbose=False) | |
| exported_model = YOLO(filename, task=model.task) | |
| assert suffix in str(filename), 'export failed' | |
| emoji = '❎' # indicates export succeeded | |
| # Predict | |
| assert model.task != 'pose' or i != 7, 'GraphDef Pose inference is not supported' | |
| assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported | |
| assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML | |
| exported_model.predict(ASSETS / 'bus.jpg', imgsz=imgsz, device=device, half=half) | |
| # Validate | |
| data = data or TASK2DATA[model.task] # task to dataset, i.e. coco8.yaml for task=detect | |
| key = TASK2METRIC[model.task] # task to metric, i.e. metrics/mAP50-95(B) for task=detect | |
| results = exported_model.val(data=data, | |
| batch=1, | |
| imgsz=imgsz, | |
| plots=False, | |
| device=device, | |
| half=half, | |
| int8=int8, | |
| verbose=False) | |
| metric, speed = results.results_dict[key], results.speed['inference'] | |
| y.append([name, '✅', round(file_size(filename), 1), round(metric, 4), round(speed, 2)]) | |
| except Exception as e: | |
| if verbose: | |
| assert type(e) is AssertionError, f'Benchmark failure for {name}: {e}' | |
| LOGGER.warning(f'ERROR ❌️ Benchmark failure for {name}: {e}') | |
| y.append([name, emoji, round(file_size(filename), 1), None, None]) # mAP, t_inference | |
| # Print results | |
| check_yolo(device=device) # print system info | |
| df = pd.DataFrame(y, columns=['Format', 'Status❔', 'Size (MB)', key, 'Inference time (ms/im)']) | |
| name = Path(model.ckpt_path).name | |
| s = f'\nBenchmarks complete for {name} on {data} at imgsz={imgsz} ({time.time() - t0:.2f}s)\n{df}\n' | |
| LOGGER.info(s) | |
| with open('benchmarks.log', 'a', errors='ignore', encoding='utf-8') as f: | |
| f.write(s) | |
| if verbose and isinstance(verbose, float): | |
| metrics = df[key].array # values to compare to floor | |
| floor = verbose # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n | |
| assert all(x > floor for x in metrics if pd.notna(x)), f'Benchmark failure: metric(s) < floor {floor}' | |
| return df | |
| class ProfileModels: | |
| """ | |
| ProfileModels class for profiling different models on ONNX and TensorRT. | |
| This class profiles the performance of different models, provided their paths. The profiling includes parameters such as | |
| model speed and FLOPs. | |
| Attributes: | |
| paths (list): Paths of the models to profile. | |
| num_timed_runs (int): Number of timed runs for the profiling. Default is 100. | |
| num_warmup_runs (int): Number of warmup runs before profiling. Default is 10. | |
| min_time (float): Minimum number of seconds to profile for. Default is 60. | |
| imgsz (int): Image size used in the models. Default is 640. | |
| Methods: | |
| profile(): Profiles the models and prints the result. | |
| Example: | |
| ```python | |
| from ultralytics.utils.benchmarks import ProfileModels | |
| ProfileModels(['yolov8n.yaml', 'yolov8s.yaml'], imgsz=640).profile() | |
| ``` | |
| """ | |
| def __init__(self, | |
| paths: list, | |
| num_timed_runs=100, | |
| num_warmup_runs=10, | |
| min_time=60, | |
| imgsz=640, | |
| half=True, | |
| trt=True, | |
| device=None): | |
| """ | |
| Initialize the ProfileModels class for profiling models. | |
| Args: | |
| paths (list): List of paths of the models to be profiled. | |
| num_timed_runs (int, optional): Number of timed runs for the profiling. Default is 100. | |
| num_warmup_runs (int, optional): Number of warmup runs before the actual profiling starts. Default is 10. | |
| min_time (float, optional): Minimum time in seconds for profiling a model. Default is 60. | |
| imgsz (int, optional): Size of the image used during profiling. Default is 640. | |
| half (bool, optional): Flag to indicate whether to use half-precision floating point for profiling. Default is True. | |
| trt (bool, optional): Flag to indicate whether to profile using TensorRT. Default is True. | |
| device (torch.device, optional): Device used for profiling. If None, it is determined automatically. Default is None. | |
| """ | |
| self.paths = paths | |
| self.num_timed_runs = num_timed_runs | |
| self.num_warmup_runs = num_warmup_runs | |
| self.min_time = min_time | |
| self.imgsz = imgsz | |
| self.half = half | |
| self.trt = trt # run TensorRT profiling | |
| self.device = device or torch.device(0 if torch.cuda.is_available() else 'cpu') | |
| def profile(self): | |
| """Logs the benchmarking results of a model, checks metrics against floor and returns the results.""" | |
| files = self.get_files() | |
| if not files: | |
| print('No matching *.pt or *.onnx files found.') | |
| return | |
| table_rows = [] | |
| output = [] | |
| for file in files: | |
| engine_file = file.with_suffix('.engine') | |
| if file.suffix in ('.pt', '.yaml', '.yml'): | |
| model = YOLO(str(file)) | |
| model.fuse() # to report correct params and GFLOPs in model.info() | |
| model_info = model.info() | |
| if self.trt and self.device.type != 'cpu' and not engine_file.is_file(): | |
| engine_file = model.export(format='engine', | |
| half=self.half, | |
| imgsz=self.imgsz, | |
| device=self.device, | |
| verbose=False) | |
| onnx_file = model.export(format='onnx', | |
| half=self.half, | |
| imgsz=self.imgsz, | |
| simplify=True, | |
| device=self.device, | |
| verbose=False) | |
| elif file.suffix == '.onnx': | |
| model_info = self.get_onnx_model_info(file) | |
| onnx_file = file | |
| else: | |
| continue | |
| t_engine = self.profile_tensorrt_model(str(engine_file)) | |
| t_onnx = self.profile_onnx_model(str(onnx_file)) | |
| table_rows.append(self.generate_table_row(file.stem, t_onnx, t_engine, model_info)) | |
| output.append(self.generate_results_dict(file.stem, t_onnx, t_engine, model_info)) | |
| self.print_table(table_rows) | |
| return output | |
| def get_files(self): | |
| """Returns a list of paths for all relevant model files given by the user.""" | |
| files = [] | |
| for path in self.paths: | |
| path = Path(path) | |
| if path.is_dir(): | |
| extensions = ['*.pt', '*.onnx', '*.yaml'] | |
| files.extend([file for ext in extensions for file in glob.glob(str(path / ext))]) | |
| elif path.suffix in {'.pt', '.yaml', '.yml'}: # add non-existing | |
| files.append(str(path)) | |
| else: | |
| files.extend(glob.glob(str(path))) | |
| print(f'Profiling: {sorted(files)}') | |
| return [Path(file) for file in sorted(files)] | |
| def get_onnx_model_info(self, onnx_file: str): | |
| """Retrieves the information including number of layers, parameters, gradients and FLOPs for an ONNX model | |
| file. | |
| """ | |
| # return (num_layers, num_params, num_gradients, num_flops) | |
| return 0.0, 0.0, 0.0, 0.0 | |
| def iterative_sigma_clipping(self, data, sigma=2, max_iters=3): | |
| """Applies an iterative sigma clipping algorithm to the given data times number of iterations.""" | |
| data = np.array(data) | |
| for _ in range(max_iters): | |
| mean, std = np.mean(data), np.std(data) | |
| clipped_data = data[(data > mean - sigma * std) & (data < mean + sigma * std)] | |
| if len(clipped_data) == len(data): | |
| break | |
| data = clipped_data | |
| return data | |
| def profile_tensorrt_model(self, engine_file: str, eps: float = 1e-3): | |
| """Profiles the TensorRT model, measuring average run time and standard deviation among runs.""" | |
| if not self.trt or not Path(engine_file).is_file(): | |
| return 0.0, 0.0 | |
| # Model and input | |
| model = YOLO(engine_file) | |
| input_data = np.random.rand(self.imgsz, self.imgsz, 3).astype(np.float32) # must be FP32 | |
| # Warmup runs | |
| elapsed = 0.0 | |
| for _ in range(3): | |
| start_time = time.time() | |
| for _ in range(self.num_warmup_runs): | |
| model(input_data, imgsz=self.imgsz, verbose=False) | |
| elapsed = time.time() - start_time | |
| # Compute number of runs as higher of min_time or num_timed_runs | |
| num_runs = max(round(self.min_time / (elapsed + eps) * self.num_warmup_runs), self.num_timed_runs * 50) | |
| # Timed runs | |
| run_times = [] | |
| for _ in TQDM(range(num_runs), desc=engine_file): | |
| results = model(input_data, imgsz=self.imgsz, verbose=False) | |
| run_times.append(results[0].speed['inference']) # Convert to milliseconds | |
| run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=3) # sigma clipping | |
| return np.mean(run_times), np.std(run_times) | |
| def profile_onnx_model(self, onnx_file: str, eps: float = 1e-3): | |
| """Profiles an ONNX model by executing it multiple times and returns the mean and standard deviation of run | |
| times. | |
| """ | |
| check_requirements('onnxruntime') | |
| import onnxruntime as ort | |
| # Session with either 'TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider' | |
| sess_options = ort.SessionOptions() | |
| sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL | |
| sess_options.intra_op_num_threads = 8 # Limit the number of threads | |
| sess = ort.InferenceSession(onnx_file, sess_options, providers=['CPUExecutionProvider']) | |
| input_tensor = sess.get_inputs()[0] | |
| input_type = input_tensor.type | |
| # Mapping ONNX datatype to numpy datatype | |
| if 'float16' in input_type: | |
| input_dtype = np.float16 | |
| elif 'float' in input_type: | |
| input_dtype = np.float32 | |
| elif 'double' in input_type: | |
| input_dtype = np.float64 | |
| elif 'int64' in input_type: | |
| input_dtype = np.int64 | |
| elif 'int32' in input_type: | |
| input_dtype = np.int32 | |
| else: | |
| raise ValueError(f'Unsupported ONNX datatype {input_type}') | |
| input_data = np.random.rand(*input_tensor.shape).astype(input_dtype) | |
| input_name = input_tensor.name | |
| output_name = sess.get_outputs()[0].name | |
| # Warmup runs | |
| elapsed = 0.0 | |
| for _ in range(3): | |
| start_time = time.time() | |
| for _ in range(self.num_warmup_runs): | |
| sess.run([output_name], {input_name: input_data}) | |
| elapsed = time.time() - start_time | |
| # Compute number of runs as higher of min_time or num_timed_runs | |
| num_runs = max(round(self.min_time / (elapsed + eps) * self.num_warmup_runs), self.num_timed_runs) | |
| # Timed runs | |
| run_times = [] | |
| for _ in TQDM(range(num_runs), desc=onnx_file): | |
| start_time = time.time() | |
| sess.run([output_name], {input_name: input_data}) | |
| run_times.append((time.time() - start_time) * 1000) # Convert to milliseconds | |
| run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=5) # sigma clipping | |
| return np.mean(run_times), np.std(run_times) | |
| def generate_table_row(self, model_name, t_onnx, t_engine, model_info): | |
| """Generates a formatted string for a table row that includes model performance and metric details.""" | |
| layers, params, gradients, flops = model_info | |
| return f'| {model_name:18s} | {self.imgsz} | - | {t_onnx[0]:.2f} ± {t_onnx[1]:.2f} ms | {t_engine[0]:.2f} ± {t_engine[1]:.2f} ms | {params / 1e6:.1f} | {flops:.1f} |' | |
| def generate_results_dict(self, model_name, t_onnx, t_engine, model_info): | |
| """Generates a dictionary of model details including name, parameters, GFLOPS and speed metrics.""" | |
| layers, params, gradients, flops = model_info | |
| return { | |
| 'model/name': model_name, | |
| 'model/parameters': params, | |
| 'model/GFLOPs': round(flops, 3), | |
| 'model/speed_ONNX(ms)': round(t_onnx[0], 3), | |
| 'model/speed_TensorRT(ms)': round(t_engine[0], 3)} | |
| def print_table(self, table_rows): | |
| """Formats and prints a comparison table for different models with given statistics and performance data.""" | |
| gpu = torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'GPU' | |
| header = f'| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>{gpu} TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |' | |
| separator = '|-------------|---------------------|--------------------|------------------------------|-----------------------------------|------------------|-----------------|' | |
| print(f'\n\n{header}') | |
| print(separator) | |
| for row in table_rows: | |
| print(row) | |