Spaces:
Runtime error
Runtime error
| # Ultralytics YOLO 🚀, AGPL-3.0 license | |
| import subprocess | |
| import pytest | |
| from ultralytics.utils import ASSETS, WEIGHTS_DIR | |
| from ultralytics.utils.checks import cuda_device_count, cuda_is_available | |
| CUDA_IS_AVAILABLE = cuda_is_available() | |
| CUDA_DEVICE_COUNT = cuda_device_count() | |
| TASK_ARGS = [ | |
| ('detect', 'yolov8n', 'coco8.yaml'), | |
| ('segment', 'yolov8n-seg', 'coco8-seg.yaml'), | |
| ('classify', 'yolov8n-cls', 'imagenet10'), | |
| ('pose', 'yolov8n-pose', 'coco8-pose.yaml'), ] # (task, model, data) | |
| EXPORT_ARGS = [ | |
| ('yolov8n', 'torchscript'), | |
| ('yolov8n-seg', 'torchscript'), | |
| ('yolov8n-cls', 'torchscript'), | |
| ('yolov8n-pose', 'torchscript'), ] # (model, format) | |
| def run(cmd): | |
| """Execute a shell command using subprocess.""" | |
| subprocess.run(cmd.split(), check=True) | |
| def test_special_modes(): | |
| """Test various special command modes of YOLO.""" | |
| run('yolo help') | |
| run('yolo checks') | |
| run('yolo version') | |
| run('yolo settings reset') | |
| run('yolo cfg') | |
| def test_train(task, model, data): | |
| """Test YOLO training for a given task, model, and data.""" | |
| run(f'yolo train {task} model={model}.yaml data={data} imgsz=32 epochs=1 cache=disk') | |
| def test_val(task, model, data): | |
| """Test YOLO validation for a given task, model, and data.""" | |
| run(f'yolo val {task} model={WEIGHTS_DIR / model}.pt data={data} imgsz=32 save_txt save_json') | |
| def test_predict(task, model, data): | |
| """Test YOLO prediction on sample assets for a given task and model.""" | |
| run(f'yolo predict model={WEIGHTS_DIR / model}.pt source={ASSETS} imgsz=32 save save_crop save_txt') | |
| def test_export(model, format): | |
| """Test exporting a YOLO model to different formats.""" | |
| run(f'yolo export model={WEIGHTS_DIR / model}.pt format={format} imgsz=32') | |
| def test_rtdetr(task='detect', model='yolov8n-rtdetr.yaml', data='coco8.yaml'): | |
| """Test the RTDETR functionality with the Ultralytics framework.""" | |
| # Warning: MUST use imgsz=640 | |
| run(f'yolo train {task} model={model} data={data} --imgsz= 640 epochs =1, cache = disk') # add coma, spaces to args | |
| run(f"yolo predict {task} model={model} source={ASSETS / 'bus.jpg'} imgsz=640 save save_crop save_txt") | |
| def test_fastsam(task='segment', model=WEIGHTS_DIR / 'FastSAM-s.pt', data='coco8-seg.yaml'): | |
| """Test FastSAM segmentation functionality within Ultralytics.""" | |
| source = ASSETS / 'bus.jpg' | |
| run(f'yolo segment val {task} model={model} data={data} imgsz=32') | |
| run(f'yolo segment predict model={model} source={source} imgsz=32 save save_crop save_txt') | |
| from ultralytics import FastSAM | |
| from ultralytics.models.fastsam import FastSAMPrompt | |
| from ultralytics.models.sam import Predictor | |
| # Create a FastSAM model | |
| sam_model = FastSAM(model) # or FastSAM-x.pt | |
| # Run inference on an image | |
| everything_results = sam_model(source, device='cpu', retina_masks=True, imgsz=1024, conf=0.4, iou=0.9) | |
| # Remove small regions | |
| new_masks, _ = Predictor.remove_small_regions(everything_results[0].masks.data, min_area=20) | |
| # Everything prompt | |
| prompt_process = FastSAMPrompt(source, everything_results, device='cpu') | |
| ann = prompt_process.everything_prompt() | |
| # Bbox default shape [0,0,0,0] -> [x1,y1,x2,y2] | |
| ann = prompt_process.box_prompt(bbox=[200, 200, 300, 300]) | |
| # Text prompt | |
| ann = prompt_process.text_prompt(text='a photo of a dog') | |
| # Point prompt | |
| # Points default [[0,0]] [[x1,y1],[x2,y2]] | |
| # Point_label default [0] [1,0] 0:background, 1:foreground | |
| ann = prompt_process.point_prompt(points=[[200, 200]], pointlabel=[1]) | |
| prompt_process.plot(annotations=ann, output='./') | |
| def test_mobilesam(): | |
| """Test MobileSAM segmentation functionality using Ultralytics.""" | |
| from ultralytics import SAM | |
| # Load the model | |
| model = SAM(WEIGHTS_DIR / 'mobile_sam.pt') | |
| # Source | |
| source = ASSETS / 'zidane.jpg' | |
| # Predict a segment based on a point prompt | |
| model.predict(source, points=[900, 370], labels=[1]) | |
| # Predict a segment based on a box prompt | |
| model.predict(source, bboxes=[439, 437, 524, 709]) | |
| # Predict all | |
| # model(source) | |
| # Slow Tests ----------------------------------------------------------------------------------------------------------- | |
| def test_train_gpu(task, model, data): | |
| """Test YOLO training on GPU(s) for various tasks and models.""" | |
| run(f'yolo train {task} model={model}.yaml data={data} imgsz=32 epochs=1 device=0') # single GPU | |
| run(f'yolo train {task} model={model}.pt data={data} imgsz=32 epochs=1 device=0,1') # multi GPU | |