Spaces:
Build error
Build error
| from __future__ import print_function | |
| from filterpy.kalman import KalmanFilter | |
| import argparse | |
| import time | |
| import glob | |
| from skimage import io | |
| import matplotlib.patches as patches | |
| import matplotlib.pyplot as plt | |
| import os | |
| import numpy as np | |
| import matplotlib | |
| matplotlib.use('TkAgg') | |
| np.random.seed(0) | |
| def linear_assignment(cost_matrix): | |
| try: | |
| import lap # linear assignment problem solver | |
| _, x, y = lap.lapjv(cost_matrix, extend_cost=True) | |
| return np.array([[y[i], i] for i in x if i >= 0]) | |
| except ImportError: | |
| from scipy.optimize import linear_sum_assignment | |
| x, y = linear_sum_assignment(cost_matrix) | |
| return np.array(list(zip(x, y))) | |
| """From SORT: Computes IOU between two boxes in the form [x1,y1,x2,y2]""" | |
| def iou_batch(bb_test, bb_gt): | |
| bb_gt = np.expand_dims(bb_gt, 0) | |
| bb_test = np.expand_dims(bb_test, 1) | |
| xx1 = np.maximum(bb_test[..., 0], bb_gt[..., 0]) | |
| yy1 = np.maximum(bb_test[..., 1], bb_gt[..., 1]) | |
| xx2 = np.minimum(bb_test[..., 2], bb_gt[..., 2]) | |
| yy2 = np.minimum(bb_test[..., 3], bb_gt[..., 3]) | |
| w = np.maximum(0., xx2 - xx1) | |
| h = np.maximum(0., yy2 - yy1) | |
| wh = w * h | |
| o = wh / ((bb_test[..., 2] - bb_test[..., 0]) * (bb_test[..., 3] - bb_test[..., 1]) | |
| + (bb_gt[..., 2] - bb_gt[..., 0]) * (bb_gt[..., 3] - bb_gt[..., 1]) - wh) | |
| return (o) | |
| """Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form [x,y,s,r] where x,y is the center of the box and s is the scale/area and r is the aspect ratio""" | |
| def convert_bbox_to_z(bbox): | |
| w = bbox[2] - bbox[0] | |
| h = bbox[3] - bbox[1] | |
| x = bbox[0] + w/2. | |
| y = bbox[1] + h/2. | |
| s = w * h | |
| # scale is just area | |
| r = w / float(h) | |
| return np.array([x, y, s, r]).reshape((4, 1)) | |
| """Takes a bounding box in the centre form [x,y,s,r] and returns it in the form | |
| [x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right""" | |
| def convert_x_to_bbox(x, score=None): | |
| w = np.sqrt(x[2] * x[3]) | |
| h = x[2] / w | |
| if (score == None): | |
| return np.array([x[0]-w/2., x[1]-h/2., x[0]+w/2., x[1]+h/2.]).reshape((1, 4)) | |
| else: | |
| return np.array([x[0]-w/2., x[1]-h/2., x[0]+w/2., x[1]+h/2., score]).reshape((1, 5)) | |
| """This class represents the internal state of individual tracked objects observed as bbox.""" | |
| class KalmanBoxTracker(object): | |
| count = 0 | |
| def __init__(self, bbox): | |
| """ | |
| Initialize a tracker using initial bounding box | |
| Parameter 'bbox' must have 'detected class' int number at the -1 position. | |
| """ | |
| self.kf = KalmanFilter(dim_x=7, dim_z=4) | |
| self.kf.F = np.array([[1, 0, 0, 0, 1, 0, 0], [0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 0, 1], [ | |
| 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 1]]) | |
| self.kf.H = np.array([[1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], [ | |
| 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0]]) | |
| self.kf.R[2:, | |
| 2:] *= 10. # R: Covariance matrix of measurement noise (set to high for noisy inputs -> more 'inertia' of boxes') | |
| self.kf.P[4:, 4:] *= 1000. # give high uncertainty to the unobservable initial velocities | |
| self.kf.P *= 10. | |
| # Q: Covariance matrix of process noise (set to high for erratically moving things) | |
| self.kf.Q[-1, -1] *= 0.5 | |
| self.kf.Q[4:, 4:] *= 0.5 | |
| self.kf.x[:4] = convert_bbox_to_z(bbox) # STATE VECTOR | |
| self.time_since_update = 0 | |
| self.id = KalmanBoxTracker.count | |
| KalmanBoxTracker.count += 1 | |
| self.history = [] | |
| self.hits = 0 | |
| self.hit_streak = 0 | |
| self.age = 0 | |
| self.centroidarr = [] | |
| CX = (bbox[0]+bbox[2])//2 | |
| CY = (bbox[1]+bbox[3])//2 | |
| self.centroidarr.append((CX, CY)) | |
| # keep yolov5 detected class information | |
| self.detclass = bbox[5] | |
| def update(self, bbox): | |
| """ | |
| Updates the state vector with observed bbox | |
| """ | |
| self.time_since_update = 0 | |
| self.history = [] | |
| self.hits += 1 | |
| self.hit_streak += 1 | |
| self.kf.update(convert_bbox_to_z(bbox)) | |
| self.detclass = bbox[5] | |
| CX = (bbox[0]+bbox[2])//2 | |
| CY = (bbox[1]+bbox[3])//2 | |
| self.centroidarr.append((CX, CY)) | |
| def predict(self): | |
| """ | |
| Advances the state vector and returns the predicted bounding box estimate | |
| """ | |
| if ((self.kf.x[6]+self.kf.x[2]) <= 0): | |
| self.kf.x[6] *= 0.0 | |
| self.kf.predict() | |
| self.age += 1 | |
| if (self.time_since_update > 0): | |
| self.hit_streak = 0 | |
| self.time_since_update += 1 | |
| self.history.append(convert_x_to_bbox(self.kf.x)) | |
| # bbox=self.history[-1] | |
| # CX = (bbox[0]+bbox[2])/2 | |
| # CY = (bbox[1]+bbox[3])/2 | |
| # self.centroidarr.append((CX,CY)) | |
| return self.history[-1] | |
| def get_state(self): | |
| """ | |
| Returns the current bounding box estimate | |
| # test | |
| arr1 = np.array([[1,2,3,4]]) | |
| arr2 = np.array([0]) | |
| arr3 = np.expand_dims(arr2, 0) | |
| np.concatenate((arr1,arr3), axis=1) | |
| """ | |
| arr_detclass = np.expand_dims(np.array([self.detclass]), 0) | |
| arr_u_dot = np.expand_dims(self.kf.x[4], 0) | |
| arr_v_dot = np.expand_dims(self.kf.x[5], 0) | |
| arr_s_dot = np.expand_dims(self.kf.x[6], 0) | |
| return np.concatenate((convert_x_to_bbox(self.kf.x), arr_detclass, arr_u_dot, arr_v_dot, arr_s_dot), axis=1) | |
| def associate_detections_to_trackers(detections, trackers, iou_threshold=0.3): | |
| """ | |
| Assigns detections to tracked object (both represented as bounding boxes) | |
| Returns 3 lists of | |
| 1. matches, | |
| 2. unmatched_detections | |
| 3. unmatched_trackers | |
| """ | |
| if (len(trackers) == 0): | |
| return np.empty((0, 2), dtype=int), np.arange(len(detections)), np.empty((0, 5), dtype=int) | |
| iou_matrix = iou_batch(detections, trackers) | |
| if min(iou_matrix.shape) > 0: | |
| a = (iou_matrix > iou_threshold).astype(np.int32) | |
| if a.sum(1).max() == 1 and a.sum(0).max() == 1: | |
| matched_indices = np.stack(np.where(a), axis=1) | |
| else: | |
| matched_indices = linear_assignment(-iou_matrix) | |
| else: | |
| matched_indices = np.empty(shape=(0, 2)) | |
| unmatched_detections = [] | |
| for d, det in enumerate(detections): | |
| if (d not in matched_indices[:, 0]): | |
| unmatched_detections.append(d) | |
| unmatched_trackers = [] | |
| for t, trk in enumerate(trackers): | |
| if (t not in matched_indices[:, 1]): | |
| unmatched_trackers.append(t) | |
| # filter out matched with low IOU | |
| matches = [] | |
| for m in matched_indices: | |
| if (iou_matrix[m[0], m[1]] < iou_threshold): | |
| unmatched_detections.append(m[0]) | |
| unmatched_trackers.append(m[1]) | |
| else: | |
| matches.append(m.reshape(1, 2)) | |
| if (len(matches) == 0): | |
| matches = np.empty((0, 2), dtype=int) | |
| else: | |
| matches = np.concatenate(matches, axis=0) | |
| return matches, np.array(unmatched_detections), np.array(unmatched_trackers) | |
| class Sort(object): | |
| def __init__(self, max_age=1, min_hits=3, iou_threshold=0.3): | |
| """ | |
| Parameters for SORT | |
| """ | |
| self.max_age = max_age | |
| self.min_hits = min_hits | |
| self.iou_threshold = iou_threshold | |
| self.trackers = [] | |
| self.frame_count = 0 | |
| def getTrackers(self,): | |
| return self.trackers | |
| def update(self, dets=np.empty((0, 6))): | |
| """ | |
| Parameters: | |
| 'dets' - a numpy array of detection in the format [[x1, y1, x2, y2, score], [x1,y1,x2,y2,score],...] | |
| Ensure to call this method even frame has no detections. (pass np.empty((0,5))) | |
| Returns a similar array, where the last column is object ID (replacing confidence score) | |
| NOTE: The number of objects returned may differ from the number of objects provided. | |
| """ | |
| self.frame_count += 1 | |
| # Get predicted locations from existing trackers | |
| trks = np.zeros((len(self.trackers), 6)) | |
| to_del = [] | |
| ret = [] | |
| for t, trk in enumerate(trks): | |
| pos = self.trackers[t].predict()[0] | |
| trk[:] = [pos[0], pos[1], pos[2], pos[3], 0, 0] | |
| if np.any(np.isnan(pos)): | |
| to_del.append(t) | |
| trks = np.ma.compress_rows(np.ma.masked_invalid(trks)) | |
| for t in reversed(to_del): | |
| self.trackers.pop(t) | |
| matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers( | |
| dets, trks, self.iou_threshold) | |
| # Update matched trackers with assigned detections | |
| for m in matched: | |
| self.trackers[m[1]].update(dets[m[0], :]) | |
| # Create and initialize new trackers for unmatched detections | |
| for i in unmatched_dets: | |
| trk = KalmanBoxTracker(np.hstack((dets[i, :], np.array([0])))) | |
| # trk = KalmanBoxTracker(np.hstack(dets[i,:]) | |
| self.trackers.append(trk) | |
| i = len(self.trackers) | |
| for trk in reversed(self.trackers): | |
| d = trk.get_state()[0] | |
| if (trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits): | |
| # +1'd because MOT benchmark requires positive value | |
| ret.append(np.concatenate((d, [trk.id+1])).reshape(1, -1)) | |
| i -= 1 | |
| # remove dead tracklet | |
| if (trk.time_since_update > self.max_age): | |
| self.trackers.pop(i) | |
| if (len(ret) > 0): | |
| return np.concatenate(ret) | |
| return np.empty((0, 6)) | |
| def parse_args(): | |
| """Parse input arguments.""" | |
| parser = argparse.ArgumentParser(description='SORT demo') | |
| parser.add_argument('--display', dest='display', | |
| help='Display online tracker output (slow) [False]', action='store_true') | |
| parser.add_argument( | |
| "--seq_path", help="Path to detections.", type=str, default='data') | |
| parser.add_argument( | |
| "--phase", help="Subdirectory in seq_path.", type=str, default='train') | |
| parser.add_argument("--max_age", | |
| help="Maximum number of frames to keep alive a track without associated detections.", | |
| type=int, default=1) | |
| parser.add_argument("--min_hits", | |
| help="Minimum number of associated detections before track is initialised.", | |
| type=int, default=3) | |
| parser.add_argument("--iou_threshold", | |
| help="Minimum IOU for match.", type=float, default=0.3) | |
| args = parser.parse_args() | |
| return args | |
| if __name__ == '__main__': | |
| # all train | |
| args = parse_args() | |
| display = args.display | |
| phase = args.phase | |
| total_time = 0.0 | |
| total_frames = 0 | |
| colours = np.random.rand(32, 3) # used only for display | |
| if (display): | |
| if not os.path.exists('mot_benchmark'): | |
| print('\n\tERROR: mot_benchmark link not found!\n\n Create a symbolic link to the MOT benchmark\n (https://motchallenge.net/data/2D_MOT_2015/#download). E.g.:\n\n $ ln -s /path/to/MOT2015_challenge/2DMOT2015 mot_benchmark\n\n') | |
| exit() | |
| plt.ion() | |
| fig = plt.figure() | |
| ax1 = fig.add_subplot(111, aspect='equal') | |
| if not os.path.exists('output'): | |
| os.makedirs('output') | |
| pattern = os.path.join(args.seq_path, phase, '*', 'det', 'det.txt') | |
| for seq_dets_fn in glob.glob(pattern): | |
| mot_tracker = Sort(max_age=args.max_age, | |
| min_hits=args.min_hits, | |
| iou_threshold=args.iou_threshold) # create instance of the SORT tracker | |
| seq_dets = np.loadtxt(seq_dets_fn, delimiter=',') | |
| seq = seq_dets_fn[pattern.find('*'):].split(os.path.sep)[0] | |
| with open(os.path.join('output', '%s.txt' % (seq)), 'w') as out_file: | |
| print("Processing %s." % (seq)) | |
| for frame in range(int(seq_dets[:, 0].max())): | |
| frame += 1 # detection and frame numbers begin at 1 | |
| dets = seq_dets[seq_dets[:, 0] == frame, 2:7] | |
| # convert to [x1,y1,w,h] to [x1,y1,x2,y2] | |
| dets[:, 2:4] += dets[:, 0:2] | |
| total_frames += 1 | |
| if (display): | |
| fn = os.path.join('mot_benchmark', phase, seq, | |
| 'img1', '%06d.jpg' % (frame)) | |
| im = io.imread(fn) | |
| ax1.imshow(im) | |
| plt.title(seq + ' Tracked Targets') | |
| start_time = time.time() | |
| trackers = mot_tracker.update(dets) | |
| cycle_time = time.time() - start_time | |
| total_time += cycle_time | |
| for d in trackers: | |
| print('%d,%d,%.2f,%.2f,%.2f,%.2f,1,-1,-1,-1' % | |
| (frame, d[4], d[0], d[1], d[2]-d[0], d[3]-d[1]), file=out_file) | |
| if (display): | |
| d = d.astype(np.int32) | |
| ax1.add_patch(patches.Rectangle( | |
| (d[0], d[1]), d[2]-d[0], d[3]-d[1], fill=False, lw=3, ec=colours[d[4] % 32, :])) | |
| if (display): | |
| fig.canvas.flush_events() | |
| plt.draw() | |
| ax1.cla() | |
| print("Total Tracking took: %.3f seconds for %d frames or %.1f FPS" % | |
| (total_time, total_frames, total_frames / total_time)) | |
| if (display): | |
| print("Note: to get real runtime results run without the option: --display") | |