Spaces:
Running
Running
import logging | |
from llama_index.core import ( | |
SimpleDirectoryReader, | |
VectorStoreIndex, | |
StorageContext, | |
Settings, | |
get_response_synthesizer) | |
from llama_index.core.query_engine import RetrieverQueryEngine, TransformQueryEngine | |
from llama_index.core.node_parser import SentenceSplitter | |
from llama_index.core.schema import TextNode, MetadataMode | |
from llama_index.vector_stores.qdrant import QdrantVectorStore | |
from llama_index.embeddings.ollama import OllamaEmbedding | |
from llama_index.llms.ollama import Ollama | |
from llama_index.core.retrievers import VectorIndexRetriever | |
from llama_index.core.indices.query.query_transform import HyDEQueryTransform | |
from qdrant_client import QdrantClient | |
QDRANT_API_URL = os.getenv('QDRANT_API_URL') | |
QDRANT_API_KEY = os.getenv('QDRANT_API_KEY') | |
class ChatPDF: | |
text_chunks = [] | |
doc_ids = [] | |
nodes = [] | |
def __init__(self): | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
text_parser = SentenceSplitter(chunk_size=512, chunk_overlap=100) | |
logger.info("initializing the vector store related objects") | |
client = QdrantClient(url=QDRANT_API_URL, api_key=QDRANT_API_KEY) | |
vector_store = QdrantVectorStore(client=client, collection_name="rag_documents") | |
logger.info("initializing the OllamaEmbedding") | |
embed_model = OllamaEmbedding(model_name='mxbai-embed-large', request_timeout=1000000) | |
logger.info("initializing the global settings") | |
Settings.embed_model = embed_model | |
Settings.llm = Ollama(model="qwen:1.8b", request_timeout=1000000) | |
Settings.transformations = [text_parser] | |
def ingest(self, dir_path: str): | |
docs = SimpleDirectoryReader(input_dir=dir_path).load_data() | |
logger.info("enumerating docs") | |
for doc_idx, doc in enumerate(docs): | |
curr_text_chunks = text_parser.split_text(doc.text) | |
text_chunks.extend(curr_text_chunks) | |
doc_ids.extend([doc_idx] * len(curr_text_chunks)) | |
logger.info("enumerating text_chunks") | |
for idx, text_chunk in enumerate(text_chunks): | |
node = TextNode(text=text_chunk) | |
src_doc = docs[doc_ids[idx]] | |
node.metadata = src_doc.metadata | |
nodes.append(node) | |
logger.info("enumerating nodes") | |
for node in nodes: | |
node_embedding = embed_model.get_text_embedding( | |
node.get_content(metadata_mode=MetadataMode.ALL) | |
) | |
node.embedding = node_embedding | |
logger.info("initializing the storage context") | |
storage_context = StorageContext.from_defaults(vector_store=vector_store) | |
logger.info("indexing the nodes in VectorStoreIndex") | |
index = VectorStoreIndex( | |
nodes=nodes, | |
storage_context=storage_context, | |
transformations=Settings.transformations, | |
) | |
logger.info("initializing the VectorIndexRetriever with top_k as 5") | |
vector_retriever = VectorIndexRetriever(index=index, similarity_top_k=5) | |
response_synthesizer = get_response_synthesizer() | |
logger.info("creating the RetrieverQueryEngine instance") | |
vector_query_engine = RetrieverQueryEngine( | |
retriever=vector_retriever, | |
response_synthesizer=response_synthesizer, | |
) | |
logger.info("creating the HyDEQueryTransform instance") | |
hyde = HyDEQueryTransform(include_original=True) | |
self.hyde_query_engine = TransformQueryEngine(vector_query_engine, hyde) | |
def ask(self, query: str): | |
if not self.hyde_query_engine: | |
return "Please, add a PDF document first." | |
logger.info("retrieving the response to the query") | |
response = self.hyde_query_engine.query(str_or_query_bundle=query) | |
print(response) | |
return response | |
def clear(self): | |
self.text_chunks = [] | |
self.doc_ids = [] | |
self.nodes = [] |