Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,47 @@
|
|
1 |
import gradio as gr
|
2 |
-
from langchain_community.llms import GooglePalm
|
3 |
-
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
|
4 |
-
from langchain.text_splitter import CharacterTextSplitter
|
5 |
-
from langchain_community.embeddings import GooglePalmEmbeddings
|
6 |
-
from langchain_community.vectorstores import FAISS
|
7 |
-
from langchain_community.document_loaders import PyPDFLoader
|
8 |
-
from langchain_community.chains import RetrievalQA
|
9 |
-
from secret1 import GOOGLE_API as google_api
|
10 |
-
import PyPDF2
|
11 |
-
def chatbot_response(user_input, history):
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
|
17 |
-
def text_splitter_function(text):
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
|
27 |
-
def text_extract(file):
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
|
46 |
|
47 |
with gr.Blocks() as demo:
|
@@ -61,5 +61,5 @@ with gr.Blocks() as demo:
|
|
61 |
send_btn.click(chatbot_response,[user_input,state],[chatbot, state])
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
embeddings=GooglePalmEmbeddings(google_api_key=google_api)
|
65 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
# from langchain_community.llms import GooglePalm
|
3 |
+
# from langchain_community.embeddings import HuggingFaceInstructEmbeddings
|
4 |
+
# from langchain.text_splitter import CharacterTextSplitter
|
5 |
+
# from langchain_community.embeddings import GooglePalmEmbeddings
|
6 |
+
# from langchain_community.vectorstores import FAISS
|
7 |
+
# from langchain_community.document_loaders import PyPDFLoader
|
8 |
+
# from langchain_community.chains import RetrievalQA
|
9 |
+
# from secret1 import GOOGLE_API as google_api
|
10 |
+
# import PyPDF2
|
11 |
+
# def chatbot_response(user_input, history):
|
12 |
+
# # This is a placeholder function. Replace with your actual chatbot logic.
|
13 |
+
# bot_response = "You said: " + user_input
|
14 |
+
# history.append((user_input, bot_response))
|
15 |
+
# return history, history
|
16 |
|
17 |
+
# def text_splitter_function(text):
|
18 |
+
# text_splitter = CharacterTextSplitter(
|
19 |
+
# separator = '\n',
|
20 |
+
# chunk_size = 1000,
|
21 |
+
# chunk_overlap = 40,
|
22 |
+
# length_function = len,
|
23 |
+
# )
|
24 |
+
# texts = text_splitter.split_text(text)
|
25 |
+
# return texts;
|
26 |
|
27 |
+
# def text_extract(file):
|
28 |
+
# pdf_reader = PyPDF2.PdfReader(file.name)
|
29 |
+
# # Get the number of pages
|
30 |
+
# num_pages = len(pdf_reader.pages)
|
31 |
+
# # Extract text from each page
|
32 |
+
# text = ""
|
33 |
+
# for page_num in range(num_pages):
|
34 |
+
# page = pdf_reader.pages[page_num]
|
35 |
+
# text += page.extract_text()
|
36 |
+
# text_splitter=text_splitter_function(text);
|
37 |
+
# db = FAISS.from_texts(text_splitter, embeddings);
|
38 |
+
# retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 2})
|
39 |
+
# llm=GooglePalm(google_api_key=google_api)
|
40 |
+
# qa = RetrievalQA.from_chain_type(
|
41 |
+
# llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True
|
42 |
+
# )
|
43 |
+
# print(db)
|
44 |
+
# return text
|
45 |
|
46 |
|
47 |
with gr.Blocks() as demo:
|
|
|
61 |
send_btn.click(chatbot_response,[user_input,state],[chatbot, state])
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
+
# embeddings=GooglePalmEmbeddings(google_api_key=google_api)
|
65 |
demo.launch()
|