Spaces:
Running
Running
import gradio as gr | |
import librosa | |
TAG_DEFAULT = "funk, pop, soul, rock, melodic, guitar, drums, bass, keyboard, percussion, 105 BPM, energetic, upbeat, groovy, vibrant, dynamic" | |
LYRIC_DEFAULT = """[verse] | |
Neon lights they flicker bright | |
City hums in dead of night | |
Rhythms pulse through concrete veins | |
Lost in echoes of refrains | |
[verse] | |
Bassline groovin' in my chest | |
Heartbeats match the city's zest | |
Electric whispers fill the air | |
Synthesized dreams everywhere | |
[chorus] | |
Turn it up and let it flow | |
Feel the fire let it grow | |
In this rhythm we belong | |
Hear the night sing out our song | |
[verse] | |
Guitar strings they start to weep | |
Wake the soul from silent sleep | |
Every note a story told | |
In this night we’re bold and gold | |
[bridge] | |
Voices blend in harmony | |
Lost in pure cacophony | |
Timeless echoes timeless cries | |
Soulful shouts beneath the skies | |
[verse] | |
Keyboard dances on the keys | |
Melodies on evening breeze | |
Catch the tune and hold it tight | |
In this moment we take flight | |
""" | |
def create_output_ui(task_name="Text2Music"): | |
# For many consumer-grade GPU devices, only one batch can be run | |
output_audio1 = gr.Audio(type="filepath", label=f"{task_name} Generated Audio 1") | |
# output_audio2 = gr.Audio(type="filepath", label="Generated Audio 2") | |
with gr.Accordion(f"{task_name} Parameters", open=False): | |
input_params_json = gr.JSON(label=f"{task_name} Parameters") | |
# outputs = [output_audio1, output_audio2] | |
outputs = [output_audio1] | |
return outputs, input_params_json | |
def dump_func(*args): | |
print(args) | |
return [] | |
def create_text2music_ui( | |
gr, | |
text2music_process_func, | |
sample_data_func=None, | |
): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(equal_height=True): | |
# add markdown, tags and lyrics examples are from ai music generation community | |
audio_duration = gr.Slider(-1, 240.0, step=0.00001, value=-1, label="Audio Duration", interactive=True, info="-1 means random duration (30 ~ 240).", scale=9) | |
sample_bnt = gr.Button("Sample", variant="primary", scale=1) | |
prompt = gr.Textbox(lines=2, label="Tags", max_lines=4, value=TAG_DEFAULT, info="Support tags, descriptions, and scene. Use commas to separate different tags.\ntags and lyrics examples are from ai music generation community") | |
lyrics = gr.Textbox(lines=9, label="Lyrics", max_lines=13, value=LYRIC_DEFAULT, info="Support lyric structure tags like [verse], [chorus], and [bridge] to separate different parts of the lyrics.\nUse [instrumental] or [inst] to generate instrumental music. Not support genre structure tag in lyrics") | |
with gr.Accordion("Basic Settings", open=False): | |
infer_step = gr.Slider(minimum=1, maximum=60, step=1, value=27, label="Infer Steps", interactive=True) | |
guidance_scale = gr.Slider(minimum=0.0, maximum=200.0, step=0.1, value=15.0, label="Guidance Scale", interactive=True, info="When guidance_scale_lyric > 1 and guidance_scale_text > 1, the guidance scale will not be applied.") | |
guidance_scale_text = gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=0.0, label="Guidance Scale Text", interactive=True, info="Guidance scale for text condition. It can only apply to cfg. set guidance_scale_text=5.0, guidance_scale_lyric=1.5 for start") | |
guidance_scale_lyric = gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=0.0, label="Guidance Scale Lyric", interactive=True) | |
manual_seeds = gr.Textbox(label="manual seeds (default None)", placeholder="1,2,3,4", value=None, info="Seed for the generation") | |
with gr.Accordion("Advanced Settings", open=False): | |
scheduler_type = gr.Radio(["euler", "heun"], value="euler", label="Scheduler Type", elem_id="scheduler_type", info="Scheduler type for the generation. euler is recommended. heun will take more time.") | |
cfg_type = gr.Radio(["cfg", "apg", "cfg_star"], value="apg", label="CFG Type", elem_id="cfg_type", info="CFG type for the generation. apg is recommended. cfg and cfg_star are almost the same.") | |
use_erg_tag = gr.Checkbox(label="use ERG for tag", value=True, info="Use Entropy Rectifying Guidance for tag. It will multiple a temperature to the attention to make a weaker tag condition and make better diversity.") | |
use_erg_lyric = gr.Checkbox(label="use ERG for lyric", value=True, info="The same but apply to lyric encoder's attention.") | |
use_erg_diffusion = gr.Checkbox(label="use ERG for diffusion", value=True, info="The same but apply to diffusion model's attention.") | |
omega_scale = gr.Slider(minimum=-100.0, maximum=100.0, step=0.1, value=10.0, label="Granularity Scale", interactive=True, info="Granularity scale for the generation. Higher values can reduce artifacts") | |
guidance_interval = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Guidance Interval", interactive=True, info="Guidance interval for the generation. 0.5 means only apply guidance in the middle steps (0.25 * infer_steps to 0.75 * infer_steps)") | |
guidance_interval_decay = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.0, label="Guidance Interval Decay", interactive=True, info="Guidance interval decay for the generation. Guidance scale will decay from guidance_scale to min_guidance_scale in the interval. 0.0 means no decay.") | |
min_guidance_scale = gr.Slider(minimum=0.0, maximum=200.0, step=0.1, value=3.0, label="Min Guidance Scale", interactive=True, info="Min guidance scale for guidance interval decay's end scale") | |
oss_steps = gr.Textbox(label="OSS Steps", placeholder="16, 29, 52, 96, 129, 158, 172, 183, 189, 200", value=None, info="Optimal Steps for the generation. But not test well") | |
text2music_bnt = gr.Button("Generate", variant="primary") | |
with gr.Column(): | |
outputs, input_params_json = create_output_ui() | |
with gr.Tab("retake"): | |
retake_variance = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.2, label="variance") | |
retake_seeds = gr.Textbox(label="retake seeds (default None)", placeholder="", value=None) | |
retake_bnt = gr.Button("Retake", variant="primary") | |
retake_outputs, retake_input_params_json = create_output_ui("Retake") | |
def retake_process_func(json_data, retake_variance, retake_seeds): | |
return text2music_process_func( | |
json_data["audio_duration"], | |
json_data["prompt"], | |
json_data["lyrics"], | |
json_data["infer_step"], | |
json_data["guidance_scale"], | |
json_data["scheduler_type"], | |
json_data["cfg_type"], | |
json_data["omega_scale"], | |
", ".join(map(str, json_data["actual_seeds"])), | |
json_data["guidance_interval"], | |
json_data["guidance_interval_decay"], | |
json_data["min_guidance_scale"], | |
json_data["use_erg_tag"], | |
json_data["use_erg_lyric"], | |
json_data["use_erg_diffusion"], | |
", ".join(map(str, json_data["oss_steps"])), | |
json_data["guidance_scale_text"] if "guidance_scale_text" in json_data else 0.0, | |
json_data["guidance_scale_lyric"] if "guidance_scale_lyric" in json_data else 0.0, | |
retake_seeds=retake_seeds, | |
retake_variance=retake_variance, | |
task="retake", | |
) | |
retake_bnt.click( | |
fn=retake_process_func, | |
inputs=[ | |
input_params_json, | |
retake_variance, | |
retake_seeds, | |
], | |
outputs=retake_outputs + [retake_input_params_json], | |
) | |
with gr.Tab("repainting"): | |
retake_variance = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.2, label="variance") | |
retake_seeds = gr.Textbox(label="repaint seeds (default None)", placeholder="", value=None) | |
repaint_start = gr.Slider(minimum=0.0, maximum=240.0, step=0.01, value=0.0, label="Repaint Start Time", interactive=True) | |
repaint_end = gr.Slider(minimum=0.0, maximum=240.0, step=0.01, value=30.0, label="Repaint End Time", interactive=True) | |
repaint_source = gr.Radio(["text2music", "last_repaint", "upload"], value="text2music", label="Repaint Source", elem_id="repaint_source") | |
repaint_source_audio_upload = gr.Audio(label="Upload Audio", type="filepath", visible=False, elem_id="repaint_source_audio_upload") | |
repaint_source.change( | |
fn=lambda x: gr.update(visible=x == "upload", elem_id="repaint_source_audio_upload"), | |
inputs=[repaint_source], | |
outputs=[repaint_source_audio_upload], | |
) | |
repaint_bnt = gr.Button("Repaint", variant="primary") | |
repaint_outputs, repaint_input_params_json = create_output_ui("Repaint") | |
def repaint_process_func( | |
text2music_json_data, | |
repaint_json_data, | |
retake_variance, | |
retake_seeds, | |
repaint_start, | |
repaint_end, | |
repaint_source, | |
repaint_source_audio_upload, | |
prompt, | |
lyrics, | |
infer_step, | |
guidance_scale, | |
scheduler_type, | |
cfg_type, | |
omega_scale, | |
manual_seeds, | |
guidance_interval, | |
guidance_interval_decay, | |
min_guidance_scale, | |
use_erg_tag, | |
use_erg_lyric, | |
use_erg_diffusion, | |
oss_steps, | |
guidance_scale_text, | |
guidance_scale_lyric, | |
): | |
if repaint_source == "upload": | |
src_audio_path = repaint_source_audio_upload | |
audio_duration = librosa.get_duration(filename=src_audio_path) | |
json_data = { | |
"audio_duration": audio_duration | |
} | |
elif repaint_source == "text2music": | |
json_data = text2music_json_data | |
src_audio_path = json_data["audio_path"] | |
elif repaint_source == "last_repaint": | |
json_data = repaint_json_data | |
src_audio_path = json_data["audio_path"] | |
return text2music_process_func( | |
json_data["audio_duration"], | |
prompt, | |
lyrics, | |
infer_step, | |
guidance_scale, | |
scheduler_type, | |
cfg_type, | |
omega_scale, | |
manual_seeds, | |
guidance_interval, | |
guidance_interval_decay, | |
min_guidance_scale, | |
use_erg_tag, | |
use_erg_lyric, | |
use_erg_diffusion, | |
oss_steps, | |
guidance_scale_text, | |
guidance_scale_lyric, | |
retake_seeds=retake_seeds, | |
retake_variance=retake_variance, | |
task="repaint", | |
repaint_start=repaint_start, | |
repaint_end=repaint_end, | |
src_audio_path=src_audio_path, | |
) | |
repaint_bnt.click( | |
fn=repaint_process_func, | |
inputs=[ | |
input_params_json, | |
repaint_input_params_json, | |
retake_variance, | |
retake_seeds, | |
repaint_start, | |
repaint_end, | |
repaint_source, | |
repaint_source_audio_upload, | |
prompt, | |
lyrics, | |
infer_step, | |
guidance_scale, | |
scheduler_type, | |
cfg_type, | |
omega_scale, | |
manual_seeds, | |
guidance_interval, | |
guidance_interval_decay, | |
min_guidance_scale, | |
use_erg_tag, | |
use_erg_lyric, | |
use_erg_diffusion, | |
oss_steps, | |
guidance_scale_text, | |
guidance_scale_lyric, | |
], | |
outputs=repaint_outputs + [repaint_input_params_json], | |
) | |
with gr.Tab("edit"): | |
edit_prompt = gr.Textbox(lines=2, label="Edit Tags", max_lines=4) | |
edit_lyrics = gr.Textbox(lines=9, label="Edit Lyrics", max_lines=13) | |
retake_seeds = gr.Textbox(label="edit seeds (default None)", placeholder="", value=None) | |
edit_type = gr.Radio(["only_lyrics", "remix"], value="only_lyrics", label="Edit Type", elem_id="edit_type", info="`only_lyrics` will keep the whole song the same except lyrics difference. Make your diffrence smaller, e.g. one lyrc line change.\nremix can change the song melody and genre") | |
edit_n_min = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.6, label="edit_n_min", interactive=True) | |
edit_n_max = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=1.0, label="edit_n_max", interactive=True) | |
def edit_type_change_func(edit_type): | |
if edit_type == "only_lyrics": | |
n_min = 0.6 | |
n_max = 1.0 | |
elif edit_type == "remix": | |
n_min = 0.2 | |
n_max = 0.4 | |
return n_min, n_max | |
edit_type.change( | |
edit_type_change_func, | |
inputs=[edit_type], | |
outputs=[edit_n_min, edit_n_max] | |
) | |
edit_source = gr.Radio(["text2music", "last_edit", "upload"], value="text2music", label="Edit Source", elem_id="edit_source") | |
edit_source_audio_upload = gr.Audio(label="Upload Audio", type="filepath", visible=False, elem_id="edit_source_audio_upload") | |
edit_source.change( | |
fn=lambda x: gr.update(visible=x == "upload", elem_id="edit_source_audio_upload"), | |
inputs=[edit_source], | |
outputs=[edit_source_audio_upload], | |
) | |
edit_bnt = gr.Button("Edit", variant="primary") | |
edit_outputs, edit_input_params_json = create_output_ui("Edit") | |
def edit_process_func( | |
text2music_json_data, | |
edit_input_params_json, | |
edit_source, | |
edit_source_audio_upload, | |
prompt, | |
lyrics, | |
edit_prompt, | |
edit_lyrics, | |
edit_n_min, | |
edit_n_max, | |
infer_step, | |
guidance_scale, | |
scheduler_type, | |
cfg_type, | |
omega_scale, | |
manual_seeds, | |
guidance_interval, | |
guidance_interval_decay, | |
min_guidance_scale, | |
use_erg_tag, | |
use_erg_lyric, | |
use_erg_diffusion, | |
oss_steps, | |
guidance_scale_text, | |
guidance_scale_lyric, | |
retake_seeds, | |
): | |
if edit_source == "upload": | |
src_audio_path = edit_source_audio_upload | |
audio_duration = librosa.get_duration(filename=src_audio_path) | |
json_data = { | |
"audio_duration": audio_duration | |
} | |
elif edit_source == "text2music": | |
json_data = text2music_json_data | |
src_audio_path = json_data["audio_path"] | |
elif edit_source == "last_edit": | |
json_data = edit_input_params_json | |
src_audio_path = json_data["audio_path"] | |
if not edit_prompt: | |
edit_prompt = prompt | |
if not edit_lyrics: | |
edit_lyrics = lyrics | |
return text2music_process_func( | |
json_data["audio_duration"], | |
prompt, | |
lyrics, | |
infer_step, | |
guidance_scale, | |
scheduler_type, | |
cfg_type, | |
omega_scale, | |
manual_seeds, | |
guidance_interval, | |
guidance_interval_decay, | |
min_guidance_scale, | |
use_erg_tag, | |
use_erg_lyric, | |
use_erg_diffusion, | |
oss_steps, | |
guidance_scale_text, | |
guidance_scale_lyric, | |
task="edit", | |
src_audio_path=src_audio_path, | |
edit_target_prompt=edit_prompt, | |
edit_target_lyrics=edit_lyrics, | |
edit_n_min=edit_n_min, | |
edit_n_max=edit_n_max, | |
retake_seeds=retake_seeds, | |
) | |
edit_bnt.click( | |
fn=edit_process_func, | |
inputs=[ | |
input_params_json, | |
edit_input_params_json, | |
edit_source, | |
edit_source_audio_upload, | |
prompt, | |
lyrics, | |
edit_prompt, | |
edit_lyrics, | |
edit_n_min, | |
edit_n_max, | |
infer_step, | |
guidance_scale, | |
scheduler_type, | |
cfg_type, | |
omega_scale, | |
manual_seeds, | |
guidance_interval, | |
guidance_interval_decay, | |
min_guidance_scale, | |
use_erg_tag, | |
use_erg_lyric, | |
use_erg_diffusion, | |
oss_steps, | |
guidance_scale_text, | |
guidance_scale_lyric, | |
retake_seeds, | |
], | |
outputs=edit_outputs + [edit_input_params_json], | |
) | |
with gr.Tab("extend"): | |
extend_seeds = gr.Textbox(label="extend seeds (default None)", placeholder="", value=None) | |
left_extend_length = gr.Slider(minimum=0.0, maximum=240.0, step=0.01, value=0.0, label="Left Extend Length", interactive=True) | |
right_extend_length = gr.Slider(minimum=0.0, maximum=240.0, step=0.01, value=30.0, label="Right Extend Length", interactive=True) | |
extend_source = gr.Radio(["text2music", "last_extend", "upload"], value="text2music", label="Extend Source", elem_id="extend_source") | |
extend_source_audio_upload = gr.Audio(label="Upload Audio", type="filepath", visible=False, elem_id="extend_source_audio_upload") | |
extend_source.change( | |
fn=lambda x: gr.update(visible=x == "upload", elem_id="extend_source_audio_upload"), | |
inputs=[extend_source], | |
outputs=[extend_source_audio_upload], | |
) | |
extend_bnt = gr.Button("Extend", variant="primary") | |
extend_outputs, extend_input_params_json = create_output_ui("Extend") | |
def extend_process_func( | |
text2music_json_data, | |
extend_input_params_json, | |
extend_seeds, | |
left_extend_length, | |
right_extend_length, | |
extend_source, | |
extend_source_audio_upload, | |
prompt, | |
lyrics, | |
infer_step, | |
guidance_scale, | |
scheduler_type, | |
cfg_type, | |
omega_scale, | |
manual_seeds, | |
guidance_interval, | |
guidance_interval_decay, | |
min_guidance_scale, | |
use_erg_tag, | |
use_erg_lyric, | |
use_erg_diffusion, | |
oss_steps, | |
guidance_scale_text, | |
guidance_scale_lyric, | |
): | |
if extend_source == "upload": | |
src_audio_path = extend_source_audio_upload | |
# get audio duration | |
audio_duration = librosa.get_duration(filename=src_audio_path) | |
json_data = { | |
"audio_duration": audio_duration | |
} | |
elif extend_source == "text2music": | |
json_data = text2music_json_data | |
src_audio_path = json_data["audio_path"] | |
elif extend_source == "last_extend": | |
json_data = extend_input_params_json | |
src_audio_path = json_data["audio_path"] | |
repaint_start = -left_extend_length | |
repaint_end = json_data["audio_duration"] + right_extend_length | |
return text2music_process_func( | |
json_data["audio_duration"], | |
prompt, | |
lyrics, | |
infer_step, | |
guidance_scale, | |
scheduler_type, | |
cfg_type, | |
omega_scale, | |
manual_seeds, | |
guidance_interval, | |
guidance_interval_decay, | |
min_guidance_scale, | |
use_erg_tag, | |
use_erg_lyric, | |
use_erg_diffusion, | |
oss_steps, | |
guidance_scale_text, | |
guidance_scale_lyric, | |
retake_seeds=extend_seeds, | |
retake_variance=1.0, | |
task="extend", | |
repaint_start=repaint_start, | |
repaint_end=repaint_end, | |
src_audio_path=src_audio_path, | |
) | |
extend_bnt.click( | |
fn=extend_process_func, | |
inputs=[ | |
input_params_json, | |
extend_input_params_json, | |
extend_seeds, | |
left_extend_length, | |
right_extend_length, | |
extend_source, | |
extend_source_audio_upload, | |
prompt, | |
lyrics, | |
infer_step, | |
guidance_scale, | |
scheduler_type, | |
cfg_type, | |
omega_scale, | |
manual_seeds, | |
guidance_interval, | |
guidance_interval_decay, | |
min_guidance_scale, | |
use_erg_tag, | |
use_erg_lyric, | |
use_erg_diffusion, | |
oss_steps, | |
guidance_scale_text, | |
guidance_scale_lyric, | |
], | |
outputs=extend_outputs + [extend_input_params_json], | |
) | |
def sample_data(): | |
json_data = sample_data_func() | |
return ( | |
json_data["audio_duration"], | |
json_data["prompt"], | |
json_data["lyrics"], | |
json_data["infer_step"], | |
json_data["guidance_scale"], | |
json_data["scheduler_type"], | |
json_data["cfg_type"], | |
json_data["omega_scale"], | |
", ".join(map(str, json_data["actual_seeds"])), | |
json_data["guidance_interval"], | |
json_data["guidance_interval_decay"], | |
json_data["min_guidance_scale"], | |
json_data["use_erg_tag"], | |
json_data["use_erg_lyric"], | |
json_data["use_erg_diffusion"], | |
", ".join(map(str, json_data["oss_steps"])), | |
json_data["guidance_scale_text"] if "guidance_scale_text" in json_data else 0.0, | |
json_data["guidance_scale_lyric"] if "guidance_scale_lyric" in json_data else 0.0, | |
) | |
sample_bnt.click( | |
sample_data, | |
outputs=[ | |
audio_duration, | |
prompt, | |
lyrics, | |
infer_step, | |
guidance_scale, | |
scheduler_type, | |
cfg_type, | |
omega_scale, | |
manual_seeds, | |
guidance_interval, | |
guidance_interval_decay, | |
min_guidance_scale, | |
use_erg_tag, | |
use_erg_lyric, | |
use_erg_diffusion, | |
oss_steps, | |
guidance_scale_text, | |
guidance_scale_lyric, | |
], | |
) | |
text2music_bnt.click( | |
fn=text2music_process_func, | |
inputs=[ | |
audio_duration, | |
prompt, | |
lyrics, | |
infer_step, | |
guidance_scale, | |
scheduler_type, | |
cfg_type, | |
omega_scale, | |
manual_seeds, | |
guidance_interval, | |
guidance_interval_decay, | |
min_guidance_scale, | |
use_erg_tag, | |
use_erg_lyric, | |
use_erg_diffusion, | |
oss_steps, | |
guidance_scale_text, | |
guidance_scale_lyric, | |
], outputs=outputs + [input_params_json] | |
) | |
def create_main_demo_ui( | |
text2music_process_func=dump_func, | |
sample_data_func=dump_func, | |
): | |
with gr.Blocks( | |
title="ACE-Step Model 1.0 DEMO", | |
) as demo: | |
gr.Markdown( | |
""" | |
<h1 style="text-align: center;">ACE-Step: A Step Towards Music Generation Foundation Model</h1> | |
<p> | |
<a href="https://ace-step.github.io/">Project</a> | | |
<a href="https://huggingface.co/ACE-Step/ACE-Step-v1-3.5B">Checkpoints</a> | | |
<a href="https://discord.gg/rjAZz2xBdG">Discord</a> | |
</p> | |
""") | |
with gr.Tab("text2music"): | |
create_text2music_ui( | |
gr=gr, | |
text2music_process_func=text2music_process_func, | |
sample_data_func=sample_data_func, | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = create_main_demo_ui() | |
demo.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
) | |