Spaces:
Running
Running
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import Any, Dict, Optional, Tuple, List, Union | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.utils import BaseOutput, is_torch_version | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.embeddings import TimestepEmbedding, Timesteps | |
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin | |
from .attention import LinearTransformerBlock, t2i_modulate | |
from .lyrics_utils.lyric_encoder import ConformerEncoder as LyricEncoder | |
def cross_norm(hidden_states, controlnet_input): | |
# input N x T x c | |
mean_hidden_states, std_hidden_states = hidden_states.mean(dim=(1,2), keepdim=True), hidden_states.std(dim=(1,2), keepdim=True) | |
mean_controlnet_input, std_controlnet_input = controlnet_input.mean(dim=(1,2), keepdim=True), controlnet_input.std(dim=(1,2), keepdim=True) | |
controlnet_input = (controlnet_input - mean_controlnet_input) * (std_hidden_states / (std_controlnet_input + 1e-12)) + mean_hidden_states | |
return controlnet_input | |
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralRotaryEmbedding with Mixtral->Qwen2 | |
class Qwen2RotaryEmbedding(nn.Module): | |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): | |
super().__init__() | |
self.dim = dim | |
self.max_position_embeddings = max_position_embeddings | |
self.base = base | |
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
# Build here to make `torch.jit.trace` work. | |
self._set_cos_sin_cache( | |
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() | |
) | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
self.max_seq_len_cached = seq_len | |
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) | |
freqs = torch.outer(t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | |
def forward(self, x, seq_len=None): | |
# x: [bs, num_attention_heads, seq_len, head_size] | |
if seq_len > self.max_seq_len_cached: | |
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) | |
return ( | |
self.cos_cached[:seq_len].to(dtype=x.dtype), | |
self.sin_cached[:seq_len].to(dtype=x.dtype), | |
) | |
class T2IFinalLayer(nn.Module): | |
""" | |
The final layer of Sana. | |
""" | |
def __init__(self, hidden_size, patch_size=[16, 1], out_channels=256): | |
super().__init__() | |
self.norm_final = nn.RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.linear = nn.Linear(hidden_size, patch_size[0] * patch_size[1] * out_channels, bias=True) | |
self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size**0.5) | |
self.out_channels = out_channels | |
self.patch_size = patch_size | |
def unpatchfy( | |
self, | |
hidden_states: torch.Tensor, | |
width: int, | |
): | |
# 4 unpatchify | |
new_height, new_width = 1, hidden_states.size(1) | |
hidden_states = hidden_states.reshape( | |
shape=(hidden_states.shape[0], new_height, new_width, self.patch_size[0], self.patch_size[1], self.out_channels) | |
).contiguous() | |
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) | |
output = hidden_states.reshape( | |
shape=(hidden_states.shape[0], self.out_channels, new_height * self.patch_size[0], new_width * self.patch_size[1]) | |
).contiguous() | |
if width > new_width: | |
output = torch.nn.functional.pad(output, (0, width - new_width, 0, 0), 'constant', 0) | |
elif width < new_width: | |
output = output[:, :, :, :width] | |
return output | |
def forward(self, x, t, output_length): | |
shift, scale = (self.scale_shift_table[None] + t[:, None]).chunk(2, dim=1) | |
x = t2i_modulate(self.norm_final(x), shift, scale) | |
x = self.linear(x) | |
# unpatchify | |
output = self.unpatchfy(x, output_length) | |
return output | |
class PatchEmbed(nn.Module): | |
"""2D Image to Patch Embedding""" | |
def __init__( | |
self, | |
height=16, | |
width=4096, | |
patch_size=(16, 1), | |
in_channels=8, | |
embed_dim=1152, | |
bias=True, | |
): | |
super().__init__() | |
patch_size_h, patch_size_w = patch_size | |
self.early_conv_layers = nn.Sequential( | |
nn.Conv2d(in_channels, in_channels*256, kernel_size=patch_size, stride=patch_size, padding=0, bias=bias), | |
torch.nn.GroupNorm(num_groups=32, num_channels=in_channels*256, eps=1e-6, affine=True), | |
nn.Conv2d(in_channels*256, embed_dim, kernel_size=1, stride=1, padding=0, bias=bias) | |
) | |
self.patch_size = patch_size | |
self.height, self.width = height // patch_size_h, width // patch_size_w | |
self.base_size = self.width | |
def forward(self, latent): | |
# early convolutions, N x C x H x W -> N x 256 * sqrt(patch_size) x H/patch_size x W/patch_size | |
latent = self.early_conv_layers(latent) | |
latent = latent.flatten(2).transpose(1, 2) # BCHW -> BNC | |
return latent | |
class Transformer2DModelOutput(BaseOutput): | |
sample: torch.FloatTensor | |
proj_losses: Optional[Tuple[Tuple[str, torch.Tensor]]] = None | |
class ACEStepTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
in_channels: Optional[int] = 8, | |
num_layers: int = 28, | |
inner_dim: int = 1536, | |
attention_head_dim: int = 64, | |
num_attention_heads: int = 24, | |
mlp_ratio: float = 4.0, | |
out_channels: int = 8, | |
max_position: int = 32768, | |
rope_theta: float = 1000000.0, | |
speaker_embedding_dim: int = 512, | |
text_embedding_dim: int = 768, | |
ssl_encoder_depths: List[int] = [9, 9], | |
ssl_names: List[str] = ["mert", "m-hubert"], | |
ssl_latent_dims: List[int] = [1024, 768], | |
lyric_encoder_vocab_size: int = 6681, | |
lyric_hidden_size: int = 1024, | |
patch_size: List[int] = [16, 1], | |
max_height: int = 16, | |
max_width: int = 4096, | |
**kwargs, | |
): | |
super().__init__() | |
self.num_attention_heads = num_attention_heads | |
self.attention_head_dim = attention_head_dim | |
inner_dim = num_attention_heads * attention_head_dim | |
self.inner_dim = inner_dim | |
self.out_channels = out_channels | |
self.max_position = max_position | |
self.patch_size = patch_size | |
self.rope_theta = rope_theta | |
self.rotary_emb = Qwen2RotaryEmbedding( | |
dim=self.attention_head_dim, | |
max_position_embeddings=self.max_position, | |
base=self.rope_theta, | |
) | |
# 2. Define input layers | |
self.in_channels = in_channels | |
# 3. Define transformers blocks | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
LinearTransformerBlock( | |
dim=self.inner_dim, | |
num_attention_heads=self.num_attention_heads, | |
attention_head_dim=attention_head_dim, | |
mlp_ratio=mlp_ratio, | |
add_cross_attention=True, | |
add_cross_attention_dim=self.inner_dim, | |
) | |
for i in range(self.config.num_layers) | |
] | |
) | |
self.num_layers = num_layers | |
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) | |
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=self.inner_dim) | |
self.t_block = nn.Sequential(nn.SiLU(), nn.Linear(self.inner_dim, 6 * self.inner_dim, bias=True)) | |
# speaker | |
self.speaker_embedder = nn.Linear(speaker_embedding_dim, self.inner_dim) | |
# genre | |
self.genre_embedder = nn.Linear(text_embedding_dim, self.inner_dim) | |
# lyric | |
self.lyric_embs = nn.Embedding(lyric_encoder_vocab_size, lyric_hidden_size) | |
self.lyric_encoder = LyricEncoder(input_size=lyric_hidden_size, static_chunk_size=0) | |
self.lyric_proj = nn.Linear(lyric_hidden_size, self.inner_dim) | |
projector_dim = 2 * self.inner_dim | |
self.projectors = nn.ModuleList([ | |
nn.Sequential( | |
nn.Linear(self.inner_dim, projector_dim), | |
nn.SiLU(), | |
nn.Linear(projector_dim, projector_dim), | |
nn.SiLU(), | |
nn.Linear(projector_dim, ssl_dim), | |
) for ssl_dim in ssl_latent_dims | |
]) | |
self.ssl_latent_dims = ssl_latent_dims | |
self.ssl_encoder_depths = ssl_encoder_depths | |
self.cosine_loss = torch.nn.CosineEmbeddingLoss(margin=0.0, reduction='mean') | |
self.ssl_names = ssl_names | |
self.proj_in = PatchEmbed( | |
height=max_height, | |
width=max_width, | |
patch_size=patch_size, | |
embed_dim=self.inner_dim, | |
bias=True, | |
) | |
self.final_layer = T2IFinalLayer(self.inner_dim, patch_size=patch_size, out_channels=out_channels) | |
self.gradient_checkpointing = False | |
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking | |
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None: | |
""" | |
Sets the attention processor to use [feed forward | |
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). | |
Parameters: | |
chunk_size (`int`, *optional*): | |
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually | |
over each tensor of dim=`dim`. | |
dim (`int`, *optional*, defaults to `0`): | |
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) | |
or dim=1 (sequence length). | |
""" | |
if dim not in [0, 1]: | |
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") | |
# By default chunk size is 1 | |
chunk_size = chunk_size or 1 | |
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): | |
if hasattr(module, "set_chunk_feed_forward"): | |
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) | |
for child in module.children(): | |
fn_recursive_feed_forward(child, chunk_size, dim) | |
for module in self.children(): | |
fn_recursive_feed_forward(module, chunk_size, dim) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if hasattr(module, "gradient_checkpointing"): | |
module.gradient_checkpointing = value | |
def forward_lyric_encoder( | |
self, | |
lyric_token_idx: Optional[torch.LongTensor] = None, | |
lyric_mask: Optional[torch.LongTensor] = None, | |
): | |
# N x T x D | |
lyric_embs = self.lyric_embs(lyric_token_idx) | |
prompt_prenet_out, _mask = self.lyric_encoder(lyric_embs, lyric_mask, decoding_chunk_size=1, num_decoding_left_chunks=-1) | |
prompt_prenet_out = self.lyric_proj(prompt_prenet_out) | |
return prompt_prenet_out | |
def encode( | |
self, | |
encoder_text_hidden_states: Optional[torch.Tensor] = None, | |
text_attention_mask: Optional[torch.LongTensor] = None, | |
speaker_embeds: Optional[torch.FloatTensor] = None, | |
lyric_token_idx: Optional[torch.LongTensor] = None, | |
lyric_mask: Optional[torch.LongTensor] = None, | |
): | |
bs = encoder_text_hidden_states.shape[0] | |
device = encoder_text_hidden_states.device | |
# speaker embedding | |
encoder_spk_hidden_states = self.speaker_embedder(speaker_embeds).unsqueeze(1) | |
speaker_mask = torch.ones(bs, 1, device=device) | |
# genre embedding | |
encoder_text_hidden_states = self.genre_embedder(encoder_text_hidden_states) | |
# lyric | |
encoder_lyric_hidden_states = self.forward_lyric_encoder( | |
lyric_token_idx=lyric_token_idx, | |
lyric_mask=lyric_mask, | |
) | |
encoder_hidden_states = torch.cat([encoder_spk_hidden_states, encoder_text_hidden_states, encoder_lyric_hidden_states], dim=1) | |
encoder_hidden_mask = torch.cat([speaker_mask, text_attention_mask, lyric_mask], dim=1) | |
return encoder_hidden_states, encoder_hidden_mask | |
def decode( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
encoder_hidden_mask: torch.Tensor, | |
timestep: Optional[torch.Tensor], | |
ssl_hidden_states: Optional[List[torch.Tensor]] = None, | |
output_length: int = 0, | |
block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None, | |
controlnet_scale: Union[float, torch.Tensor] = 1.0, | |
return_dict: bool = True, | |
): | |
embedded_timestep = self.timestep_embedder(self.time_proj(timestep).to(dtype=hidden_states.dtype)) | |
temb = self.t_block(embedded_timestep) | |
hidden_states = self.proj_in(hidden_states) | |
# controlnet logic | |
if block_controlnet_hidden_states is not None: | |
control_condi = cross_norm(hidden_states, block_controlnet_hidden_states) | |
hidden_states = hidden_states + control_condi * controlnet_scale | |
inner_hidden_states = [] | |
rotary_freqs_cis = self.rotary_emb(hidden_states, seq_len=hidden_states.shape[1]) | |
encoder_rotary_freqs_cis = self.rotary_emb(encoder_hidden_states, seq_len=encoder_hidden_states.shape[1]) | |
for index_block, block in enumerate(self.transformer_blocks): | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_hidden_mask, | |
rotary_freqs_cis=rotary_freqs_cis, | |
rotary_freqs_cis_cross=encoder_rotary_freqs_cis, | |
temb=temb, | |
**ckpt_kwargs, | |
) | |
else: | |
hidden_states = block( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_hidden_mask, | |
rotary_freqs_cis=rotary_freqs_cis, | |
rotary_freqs_cis_cross=encoder_rotary_freqs_cis, | |
temb=temb, | |
) | |
for ssl_encoder_depth in self.ssl_encoder_depths: | |
if index_block == ssl_encoder_depth: | |
inner_hidden_states.append(hidden_states) | |
proj_losses = [] | |
if len(inner_hidden_states) > 0 and ssl_hidden_states is not None and len(ssl_hidden_states) > 0: | |
for inner_hidden_state, projector, ssl_hidden_state, ssl_name in zip(inner_hidden_states, self.projectors, ssl_hidden_states, self.ssl_names): | |
if ssl_hidden_state is None: | |
continue | |
# 1. N x T x D1 -> N x D x D2 | |
est_ssl_hidden_state = projector(inner_hidden_state) | |
# 3. projection loss | |
bs = inner_hidden_state.shape[0] | |
proj_loss = 0.0 | |
for i, (z, z_tilde) in enumerate(zip(ssl_hidden_state, est_ssl_hidden_state)): | |
# 2. interpolate | |
z_tilde = F.interpolate(z_tilde.unsqueeze(0).transpose(1, 2), size=len(z), mode='linear', align_corners=False).transpose(1, 2).squeeze(0) | |
z_tilde = torch.nn.functional.normalize(z_tilde, dim=-1) | |
z = torch.nn.functional.normalize(z, dim=-1) | |
# T x d -> T x 1 -> 1 | |
target = torch.ones(z.shape[0], device=z.device) | |
proj_loss += self.cosine_loss(z, z_tilde, target) | |
proj_losses.append((ssl_name, proj_loss / bs)) | |
output = self.final_layer(hidden_states, embedded_timestep, output_length) | |
if not return_dict: | |
return (output, proj_losses) | |
return Transformer2DModelOutput(sample=output, proj_losses=proj_losses) | |
# @torch.compile | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: torch.Tensor, | |
encoder_text_hidden_states: Optional[torch.Tensor] = None, | |
text_attention_mask: Optional[torch.LongTensor] = None, | |
speaker_embeds: Optional[torch.FloatTensor] = None, | |
lyric_token_idx: Optional[torch.LongTensor] = None, | |
lyric_mask: Optional[torch.LongTensor] = None, | |
timestep: Optional[torch.Tensor] = None, | |
ssl_hidden_states: Optional[List[torch.Tensor]] = None, | |
block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None, | |
controlnet_scale: Union[float, torch.Tensor] = 1.0, | |
return_dict: bool = True, | |
): | |
encoder_hidden_states, encoder_hidden_mask = self.encode( | |
encoder_text_hidden_states=encoder_text_hidden_states, | |
text_attention_mask=text_attention_mask, | |
speaker_embeds=speaker_embeds, | |
lyric_token_idx=lyric_token_idx, | |
lyric_mask=lyric_mask, | |
) | |
output_length = hidden_states.shape[-1] | |
output = self.decode( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_hidden_mask=encoder_hidden_mask, | |
timestep=timestep, | |
ssl_hidden_states=ssl_hidden_states, | |
output_length=output_length, | |
block_controlnet_hidden_states=block_controlnet_hidden_states, | |
controlnet_scale=controlnet_scale, | |
return_dict=return_dict, | |
) | |
return output | |