unpairedelectron07 commited on
Commit
ff6d1ef
·
verified ·
1 Parent(s): 3527398

Upload 4 files

Browse files
audiocraft/grids/magnet/audio_magnet_16khz.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from ..musicgen._explorers import LMExplorer
8
+ from ...environment import AudioCraftEnvironment
9
+
10
+
11
+ @LMExplorer
12
+ def explorer(launcher):
13
+ partitions = AudioCraftEnvironment.get_slurm_partitions(['team', 'global'])
14
+ launcher.slurm_(gpus=32, partition=partitions)
15
+ launcher.bind_(solver='magnet/audio_magnet_16khz')
16
+ # replace this by the desired environmental sound dataset
17
+ launcher.bind_(dset='internal/sounds_16khz')
18
+
19
+ fsdp = {'autocast': False, 'fsdp.use': True}
20
+ medium = {'model/lm/model_scale': 'medium'}
21
+
22
+ # Small model (300M)
23
+ launcher.slurm_(gpus=32).bind_(label='32gpus')
24
+ with launcher.job_array():
25
+ sub = launcher.bind()
26
+ sub()
27
+
28
+ # Medium model (1.5B)
29
+ launcher.slurm_(gpus=64).bind_(label='64gpus')
30
+ with launcher.job_array():
31
+ sub = launcher.bind()
32
+ sub(medium, fsdp)
audiocraft/grids/magnet/audio_magnet_pretrained_16khz_eval.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ """
8
+ Evaluation with objective metrics for the pretrained audio-MAGNeT models.
9
+ This grid takes signature from the training grid and runs evaluation-only stage.
10
+
11
+ When running the grid for the first time, please use:
12
+ REGEN=1 dora grid magnet.audio_magnet_pretrained_16khz_eval
13
+ and re-use the REGEN=1 option when the grid is changed to force regenerating it.
14
+
15
+ Note that you need the proper metrics external libraries setup to use all
16
+ the objective metrics activated in this grid. Refer to the README for more information.
17
+ """
18
+
19
+ import os
20
+
21
+ from ..musicgen._explorers import GenerationEvalExplorer
22
+ from ...environment import AudioCraftEnvironment
23
+ from ... import train
24
+
25
+
26
+ def eval(launcher, batch_size: int = 32):
27
+ opts = {
28
+ 'dset': 'audio/audiocaps_16khz',
29
+ 'solver/audiogen/evaluation': 'objective_eval',
30
+ 'execute_only': 'evaluate',
31
+ '+dataset.evaluate.batch_size': batch_size,
32
+ '+metrics.fad.tf.batch_size': 32,
33
+ }
34
+ # binary for FAD computation: replace this path with your own path
35
+ metrics_opts = {
36
+ 'metrics.fad.tf.bin': '/data/home/jadecopet/local/usr/opt/google-research'
37
+ }
38
+
39
+ sub = launcher.bind(opts)
40
+ sub.bind_(metrics_opts)
41
+
42
+ # base objective metrics
43
+ sub()
44
+
45
+
46
+ @GenerationEvalExplorer
47
+ def explorer(launcher):
48
+ partitions = AudioCraftEnvironment.get_slurm_partitions(['team', 'global'])
49
+ launcher.slurm_(gpus=4, partition=partitions)
50
+
51
+ if 'REGEN' not in os.environ:
52
+ folder = train.main.dora.dir / 'grids' / __name__.split('.', 2)[-1]
53
+ with launcher.job_array():
54
+ for sig in folder.iterdir():
55
+ if not sig.is_symlink():
56
+ continue
57
+ xp = train.main.get_xp_from_sig(sig.name)
58
+ launcher(xp.argv)
59
+ return
60
+
61
+ with launcher.job_array():
62
+ audio_magnet = launcher.bind(solver="magnet/audio_magnet_16khz")
63
+
64
+ fsdp = {'autocast': False, 'fsdp.use': True}
65
+
66
+ # Small audio-MAGNeT model (300M)
67
+ audio_magnet_small = audio_magnet.bind({'continue_from': '//pretrained/facebook/audio-magnet-small'})
68
+ eval(audio_magnet_small, batch_size=128)
69
+
70
+ # Medium audio-MAGNeT model (1.5B)
71
+ audio_magnet_medium = audio_magnet.bind({'continue_from': '//pretrained/facebook/audio-magnet-medium'})
72
+ audio_magnet_medium.bind_({'model/lm/model_scale': 'medium'})
73
+ audio_magnet_medium.bind_(fsdp)
74
+ eval(audio_magnet_medium, batch_size=128)
audiocraft/grids/magnet/magnet_32khz.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from ..musicgen._explorers import LMExplorer
8
+ from ...environment import AudioCraftEnvironment
9
+
10
+
11
+ @LMExplorer
12
+ def explorer(launcher):
13
+ partitions = AudioCraftEnvironment.get_slurm_partitions(['team', 'global'])
14
+ launcher.slurm_(gpus=32, partition=partitions)
15
+ launcher.bind_(solver='magnet/magnet_32khz')
16
+ # replace this by the desired music dataset
17
+ launcher.bind_(dset='internal/music_400k_32khz')
18
+
19
+ fsdp = {'autocast': False, 'fsdp.use': True}
20
+ medium = {'model/lm/model_scale': 'medium'}
21
+ adam = {'optim.optimizer': 'adamw', 'optim.lr': 1e-4}
22
+ segdur_10secs = {'dataset.segment_duration': 10,
23
+ 'dataset.batch_size': 576,
24
+ 'generate.lm.decoding_steps': [20, 10, 10, 10]}
25
+
26
+ # Small models (300M)
27
+ launcher.slurm_(gpus=32).bind_(label='32gpus')
28
+ with launcher.job_array():
29
+ # 30 seconds
30
+ sub = launcher.bind()
31
+ sub()
32
+
33
+ # 10 seconds
34
+ sub = launcher.bind()
35
+ sub(segdur_10secs)
36
+
37
+ # Medium models (1.5B)
38
+ launcher.bind_(fsdp)
39
+ launcher.slurm_(gpus=64).bind_(label='64gpus')
40
+ with launcher.job_array():
41
+ # 30 seconds
42
+ sub = launcher.bind()
43
+ sub(medium, adam)
44
+
45
+ # 10 seconds
46
+ sub = launcher.bind()
47
+ sub(segdur_10secs)
audiocraft/grids/magnet/magnet_pretrained_32khz_eval.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ """
8
+ Evaluation with objective metrics for the pretrained MAGNeT models.
9
+ This grid takes signature from the training grid and runs evaluation-only stage.
10
+
11
+ When running the grid for the first time, please use:
12
+ REGEN=1 dora grid magnet.magnet_pretrained_32khz_eval
13
+ and re-use the REGEN=1 option when the grid is changed to force regenerating it.
14
+
15
+ Note that you need the proper metrics external libraries setup to use all
16
+ the objective metrics activated in this grid. Refer to the README for more information.
17
+ """
18
+
19
+ import os
20
+
21
+ from ..musicgen._explorers import GenerationEvalExplorer
22
+ from ...environment import AudioCraftEnvironment
23
+ from ... import train
24
+
25
+
26
+ def eval(launcher, batch_size: int = 32):
27
+ opts = {
28
+ 'dset': 'audio/musiccaps_32khz',
29
+ 'solver/musicgen/evaluation': 'objective_eval',
30
+ 'execute_only': 'evaluate',
31
+ '+dataset.evaluate.batch_size': batch_size,
32
+ '+metrics.fad.tf.batch_size': 16,
33
+ }
34
+ # binary for FAD computation: replace this path with your own path
35
+ metrics_opts = {
36
+ 'metrics.fad.tf.bin': '/data/home/jadecopet/local/usr/opt/google-research'
37
+ }
38
+
39
+ sub = launcher.bind(opts)
40
+ sub.bind_(metrics_opts)
41
+
42
+ # base objective metrics
43
+ sub()
44
+
45
+
46
+ @GenerationEvalExplorer
47
+ def explorer(launcher):
48
+ partitions = AudioCraftEnvironment.get_slurm_partitions(['team', 'global'])
49
+ launcher.slurm_(gpus=4, partition=partitions)
50
+
51
+ if 'REGEN' not in os.environ:
52
+ folder = train.main.dora.dir / 'grids' / __name__.split('.', 2)[-1]
53
+ with launcher.job_array():
54
+ for sig in folder.iterdir():
55
+ if not sig.is_symlink():
56
+ continue
57
+ xp = train.main.get_xp_from_sig(sig.name)
58
+ launcher(xp.argv)
59
+ return
60
+
61
+ with launcher.job_array():
62
+ magnet = launcher.bind(solver="magnet/magnet_32khz")
63
+
64
+ fsdp = {'autocast': False, 'fsdp.use': True}
65
+
66
+ segdur_10secs = {'dataset.segment_duration': 10,
67
+ 'generate.lm.decoding_steps': [20, 10, 10, 10]}
68
+
69
+ # 10-second magnet models
70
+ magnet_small_10secs = magnet.bind({'continue_from': '//pretrained/facebook/magnet-small-10secs'})
71
+ magnet_small_10secs.bind_(segdur_10secs)
72
+ eval(magnet_small_10secs, batch_size=128)
73
+
74
+ magnet_medium_10secs = magnet.bind({'continue_from': '//pretrained/facebook/magnet-medium-10secs'})
75
+ magnet_medium_10secs.bind_(segdur_10secs)
76
+ magnet_medium_10secs.bind_({'model/lm/model_scale': 'medium'})
77
+ magnet_medium_10secs.bind_(fsdp)
78
+ eval(magnet_medium_10secs, batch_size=128)
79
+
80
+ # 30-second magnet models
81
+ magnet_small_30secs = magnet.bind({'continue_from': '//pretrained/facebook/magnet-small-30secs'})
82
+ eval(magnet_small_30secs, batch_size=128)
83
+
84
+ magnet_medium_30secs = magnet.bind({'continue_from': '//pretrained/facebook/magnet-medium-30secs'})
85
+ magnet_medium_30secs.bind_({'model/lm/model_scale': 'medium'})
86
+ magnet_medium_30secs.bind_(fsdp)
87
+ eval(magnet_medium_30secs, batch_size=128)