unpairedelectron07's picture
Upload 7 files
e3061ad verified
raw
history blame
12.4 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from omegaconf import DictConfig
from . import builders, musicgen
from einops import rearrange
from torch.nn import functional as F
from ..modules.conditioners import SegmentWithAttributes
import torch
import numpy as np
import random
import typing as tp
import math
import flashy
class MagnetSolver(musicgen.MusicGenSolver):
"""Solver for MAGNeT - Masked Audio Generation using
a single Non-autoregressive Transformer https://arxiv.org/abs/2401.04577.
"""
def __init__(self, cfg: DictConfig):
super().__init__(cfg)
# initialize generation parameters by config
self.generation_params = {
'use_sampling': self.cfg.generate.lm.use_sampling,
'temp': self.cfg.generate.lm.temp,
'top_k': self.cfg.generate.lm.top_k,
'top_p': self.cfg.generate.lm.top_p,
'max_cfg_coef': self.cfg.generate.lm.max_cfg_coef,
'min_cfg_coef': self.cfg.generate.lm.min_cfg_coef,
'decoding_steps': list(self.cfg.generate.lm.decoding_steps),
'anneal_temp': self.cfg.generate.lm.anneal_temp,
'span_scoring': self.cfg.generate.lm.span_scoring,
'span_arrangement': self.cfg.generate.lm.span_arrangement
}
sequence_len = int(cfg.dataset.segment_duration * self.compression_model.frame_rate)
self.mean_maskrate_to_u = torch.tensor(self._calc_mean_maskrate_to_u_LUT(sequence_len), device=self.device)
self.ce_per_codebook = [torch.log(torch.tensor(self.compression_model.cardinality, device=self.device))
for _ in range(cfg.transformer_lm.n_q)]
def build_model(self) -> None:
self.cfg.transformer_lm.segment_duration = self.cfg.dataset.segment_duration
self.cfg.transformer_lm.span_len = self.cfg.masking.span_len
assert self.cfg.efficient_attention_backend == "xformers", "MAGNeT v1 models support only xformers backend."
super().build_model()
def _calc_mean_maskrate_to_u_LUT(self, T: int):
""" Create a Look Up Table (LUT) transforming a discrete masking percentage m in 0,1,...,100 to u,
the number of overlapping spans of length L to place s.t. the masking rate is approximately m/float(100).
It first creates the inverse transformation, of the masking rate as function of u,
using the expression choose(T - L, u) / choose(T, u), where L is the atomic span length used
during masking. See https://arxiv.org/abs/2401.04577,
appendix C, for the mean mask rate derivation.
We leverage the fact that:
choose(T - L, u) / choose(T, u) = Prod_{j = 0}^{u - 1}((T - L - j)/(T - j))
in the provided implementation, in order to avoid overflow.
Args:
T (float): Sequence length.
Returns:
(List) A LUT transforming m in 0,1,...,100 to u,
s.t. the masking rate of the span-L mask is approximately m/float(100).
"""
L = self.cfg.masking.span_len
u2mean = [0.0] # mean mask rate is 0.0 for u = 0
v = (T - L) / float(T)
for u in range(1, T):
u2mean.append(1 - v)
v *= (T - L - u) / (T - u) # Overflow-safe implementation of choose(T - L, u) / choose(T, u).
mean2u = []
for maskperc in range(101):
maskrate = maskperc / float(100)
u = int(np.searchsorted(u2mean, maskrate))
mean2u.append(u)
return mean2u
def _non_spans_mask(self, mask_probs: torch.Tensor, B: int, T: int, device: torch.device) -> torch.Tensor:
""" Construct a boolean mask of shape [B, T, 1], with masking rates defined by mask_probs.
The masked tokens are singletons, placed uniformly at random.
Args:
mask_probs (torch.Tensor): The desired masking rate per sample, of shape [B,]
B (int): Batch size.
T (int): Sequence length.
device (torch.device): device of the output tensor
Returns:
(torch.Tensor): A mask of shape [B, T]
"""
num_token_masked = (T * mask_probs).round().clamp(min=1)
batch_randperm = torch.rand((B, T), device=device).argsort(dim=-1)
return batch_randperm < rearrange(num_token_masked, 'b -> b 1')
def _spans_mask(self, mask_probs: torch.Tensor, B: int, T: int, device: torch.device) -> torch.Tensor:
""" Construct a spans mask with masking rates defined by mask_probs,
where the atomic span length ( > 1 ) is defined by cfg.masking.span_len.
Args:
mask_probs (torch.Tensor): The desired masking rate per sample, of shape [B,]
B (int): Batch size.
T (int): Sequence length.
device (torch.device): device of the output tensor
Returns:
(torch.Tensor): A spans mask of shape [B, T]
"""
rounded_probs = torch.round(100 * mask_probs).long()
k = self.mean_maskrate_to_u[rounded_probs].clamp(min=1) # k is the number of span starts
# sample random span starts
batch_randperm = torch.rand((B, T), device=device).argsort(dim=-1)
mask = batch_randperm < rearrange(k, 'b -> b 1')
B, T = mask.shape
shifted_mask = mask.clone()
for _ in range(self.cfg.masking.span_len - 1):
shifted_mask = torch.concat((torch.full((B, 1), False, device=device), shifted_mask[:, :-1]), dim=1)
mask = torch.logical_or(mask, shifted_mask)
return mask
def _get_mask(self, mask_probs: torch.Tensor, B: int, T: int, device: torch.device) -> torch.Tensor:
""" Construct a boolean mask with masking rates defined by mask_probs, and atomic
span length defined by cfg.masking.span_len.
Args:
mask_probs (torch.Tensor): The desired masking rate per sample, of shape [B,]
B (int): Batch size.
T (int): Sequence length.
device (torch.device): device of the output tensor
Returns:
(torch.Tensor): A boolean tensor of shape [B, T]
"""
if self.cfg.masking.span_len <= 1:
return self._non_spans_mask(mask_probs, B, T, device)
return self._spans_mask(mask_probs, B, T, device)
def _compute_cross_entropy_magnet(self, logits: torch.Tensor,
targets: torch.Tensor, mask: torch.Tensor, stage: torch.Tensor) -> torch.Tensor:
""" Compute cross entropy between multi-codebook targets and model's logits.
The cross entropy is computed only on a specific codebook, defined by the stage argument.
Valid timesteps for each codebook are pulled from the mask, where invalid
timesteps are set to 0.
Args:
logits (torch.Tensor): Model's logits of shape [B, K, T, card].
targets (torch.Tensor): Target codes, of shape [B, K, T].
mask (torch.Tensor): Mask for valid target codes, of shape [B, K, T].
stage (torch.Tensor): The codebook (idx) that is being optimized, as a scalar tensor.
Returns:
ce (torch.Tensor): Cross entropy of the codebook that is being optimized.
"""
assert logits.shape[:-1] == targets.shape
assert mask.shape == targets.shape
ce = torch.zeros([], device=targets.device)
logits_k = logits[:, stage, ...].contiguous().view(-1, logits.size(-1)) # [B x T, card]
targets_k = targets[:, stage, ...].contiguous().view(-1) # [B x T]
mask_k = mask[:, stage, ...].contiguous().view(-1) # [B x T]
IGNORE_IDX = -1
targets_k[~mask_k] = IGNORE_IDX
q_ce = F.cross_entropy(logits_k, targets_k, ignore_index=IGNORE_IDX)
ce += q_ce
return ce
def run_step(self, idx: int, batch: tp.Tuple[torch.Tensor, tp.List[SegmentWithAttributes]], metrics: dict) -> dict:
"""Perform one training or valid step on a given batch."""
check_synchronization_points = idx == 1 and self.device == 'cuda'
condition_tensors, audio_tokens, padding_mask = self._prepare_tokens_and_attributes(
batch, check_synchronization_points)
self.deadlock_detect.update('tokens_and_conditions')
if check_synchronization_points:
torch.cuda.set_sync_debug_mode('warn')
B, K, T = audio_tokens.shape
device = self.device
# Choose the stage (codebook idx) for update, uniformly at random.
stage_ = random.randint(0, K - 1)
stage = torch.full((1, ), stage_, device=device)
# masking
rand_time = torch.zeros((B,), device=device).float().uniform_(0, 1)
rand_mask_probs = torch.cos(rand_time * math.pi * 0.5)
# stage mask
stage_mask = self._get_mask(rand_mask_probs, B, T, device) # [B, T]
stage_mask = stage_mask.unsqueeze(1) # [B, 1, T]
# Keep all preceding codebooks.
mask = torch.full((B, K, T), False, device=device)
mask[:, stage, :] = stage_mask
# Mask all codebooks larger than stage_
mask_id = self.model.special_token_id
mask[:, (stage_+1):, :] = torch.full((B, K - stage_ - 1, T), True, device=device)
input_tokens = torch.where(mask, mask_id, audio_tokens)
# Take loss only on the chosen stage, and only on the masked tokens.
loss_mask = torch.full((B, K, T), False, device=device)
loss_mask[:, stage, :] = stage_mask
with self.autocast:
model_output = self.model.compute_predictions(input_tokens, [], condition_tensors, stage=stage_)
logits = model_output.logits
loss_mask &= padding_mask
ce = self._compute_cross_entropy_magnet(logits, audio_tokens, loss_mask, stage)
loss = ce
self.deadlock_detect.update('loss')
if check_synchronization_points:
torch.cuda.set_sync_debug_mode('default')
if self.is_training:
metrics['lr'] = self.optimizer.param_groups[0]['lr']
if self.scaler is not None:
loss = self.scaler.scale(loss)
self.deadlock_detect.update('scale')
if self.cfg.fsdp.use:
loss.backward()
flashy.distrib.average_tensors(self.model.buffers())
elif self.cfg.optim.eager_sync:
with flashy.distrib.eager_sync_model(self.model):
loss.backward()
else:
# this should always be slower but can be useful
# for weird use cases like multiple backwards.
loss.backward()
flashy.distrib.sync_model(self.model)
self.deadlock_detect.update('backward')
if self.scaler is not None:
self.scaler.unscale_(self.optimizer)
if self.cfg.optim.max_norm:
if self.cfg.fsdp.use:
metrics['grad_norm'] = self.model.clip_grad_norm_(self.cfg.optim.max_norm) # type: ignore
else:
metrics['grad_norm'] = torch.nn.utils.clip_grad_norm_(
self.model.parameters(), self.cfg.optim.max_norm
)
if self.scaler is None:
self.optimizer.step()
else:
self.scaler.step(self.optimizer)
self.scaler.update()
if self.lr_scheduler:
self.lr_scheduler.step()
self.optimizer.zero_grad()
self.deadlock_detect.update('optim')
if self.scaler is not None:
scale = self.scaler.get_scale()
metrics['grad_scale'] = scale
if not loss.isfinite().all():
raise RuntimeError("Model probably diverged.")
metrics['ce'] = ce
metrics['ppl'] = torch.exp(ce)
return metrics
class AudioMagnetSolver(MagnetSolver):
"""Solver for audio-MAGNeT. A MAGNeT model for sound generation.
More information can be found in the MAGNeT model card.
"""
DATASET_TYPE: builders.DatasetType = builders.DatasetType.SOUND