Spaces:
Build error
Build error
import pandas as pd | |
import streamlit as st | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from sklearn.metrics import r2_score | |
from sklearn.linear_model import LinearRegression | |
from sklearn.model_selection import train_test_split | |
import seaborn as sns | |
# loading the data | |
df = pd.read_csv('housing.csv') | |
# Renaming columns | |
df.rename(columns = {'Avg. Area Income':'Income','Avg. Area House Age':'House_age', 'Avg. Area Number of Rooms':'No_rooms', | |
'Avg. Area Number of Bedrooms':'No_bedrooms', 'Area Population':'population'},inplace = True) | |
# HEADINGS | |
st.title('House Price Prediction') | |
st.sidebar.header('Housing Data') | |
st.subheader('Training Data Stats') | |
st.write(df.describe()) | |
# X AND Y DATA | |
x = df.drop(['Price'], axis = 1) | |
y = df.iloc[:, -1] | |
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size = 0.2, random_state = 0) | |
# FUNCTION | |
def user_report(): | |
Income = st.sidebar.slider('Income', 17795,107702, 18000 ) | |
House_age = st.sidebar.slider('House_age', 2,10, 4 ) | |
No_rooms = st.sidebar.slider('No_rooms', 3,11, 5 ) | |
No_bedrooms = st.sidebar.slider('No_bedrooms', 2,7, 3 ) | |
population = st.sidebar.slider('population', 170,70000, 5000 ) | |
user_report_data = { | |
'Income':Income, | |
'House_age':House_age, | |
'No_rooms':No_rooms, | |
'No_bedrooms':No_bedrooms, | |
'population':population | |
} | |
report_data = pd.DataFrame(user_report_data, index=[0]) | |
return report_data | |
# Housing Data | |
user_data = user_report() | |
st.subheader('Housing Data') | |
st.write(user_data) | |
# MODEL | |
lr = LinearRegression() | |
lr.fit(x_train, y_train) | |
user_result = lr.predict(user_data) | |
# VISUALISATIONS | |
st.title('Visualised Housing Data') | |
# COLOR FUNCTION | |
if user_result[0]==0: | |
color = 'blue' | |
else: | |
color = 'red' | |
# OUTPUT | |
st.subheader('Price of House is : ') | |
st.write(str(user_result)) | |
st.title('output') | |
st.subheader('r2_score: ') | |
st.write(str(r2_score(y_test, lr.predict(x_test))*100)+'%') | |