Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,1164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import json
|
| 3 |
+
import math
|
| 4 |
+
import os
|
| 5 |
+
import traceback
|
| 6 |
+
from io import BytesIO
|
| 7 |
+
from typing import Any, Dict, List, Optional, Tuple
|
| 8 |
+
import re
|
| 9 |
+
|
| 10 |
+
import fitz # PyMuPDF
|
| 11 |
+
import gradio as gr
|
| 12 |
+
import requests
|
| 13 |
+
import torch
|
| 14 |
+
from huggingface_hub import snapshot_download
|
| 15 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 16 |
+
from qwen_vl_utils import process_vision_info
|
| 17 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
| 18 |
+
|
| 19 |
+
# Constants
|
| 20 |
+
MIN_PIXELS = 3136
|
| 21 |
+
MAX_PIXELS = 11289600
|
| 22 |
+
IMAGE_FACTOR = 28
|
| 23 |
+
|
| 24 |
+
# Prompts
|
| 25 |
+
prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
|
| 26 |
+
|
| 27 |
+
1. Bbox format: [x1, y1, x2, y2]
|
| 28 |
+
|
| 29 |
+
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].
|
| 30 |
+
|
| 31 |
+
3. Text Extraction & Formatting Rules:
|
| 32 |
+
- Picture: For the 'Picture' category, the text field should be omitted.
|
| 33 |
+
- Formula: Format its text as LaTeX.
|
| 34 |
+
- Table: Format its text as HTML.
|
| 35 |
+
- All Others (Text, Title, etc.): Format their text as Markdown.
|
| 36 |
+
|
| 37 |
+
4. Constraints:
|
| 38 |
+
- The output text must be the original text from the image, with no translation.
|
| 39 |
+
- All layout elements must be sorted according to human reading order.
|
| 40 |
+
|
| 41 |
+
5. Final Output: The entire output must be a single JSON object.
|
| 42 |
+
"""
|
| 43 |
+
|
| 44 |
+
# Utility functions
|
| 45 |
+
def round_by_factor(number: int, factor: int) -> int:
|
| 46 |
+
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
| 47 |
+
return round(number / factor) * factor
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def smart_resize(
|
| 51 |
+
height: int,
|
| 52 |
+
width: int,
|
| 53 |
+
factor: int = 28,
|
| 54 |
+
min_pixels: int = 3136,
|
| 55 |
+
max_pixels: int = 11289600,
|
| 56 |
+
):
|
| 57 |
+
"""Rescales the image so that the following conditions are met:
|
| 58 |
+
1. Both dimensions (height and width) are divisible by 'factor'.
|
| 59 |
+
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
| 60 |
+
3. The aspect ratio of the image is maintained as closely as possible.
|
| 61 |
+
"""
|
| 62 |
+
if max(height, width) / min(height, width) > 200:
|
| 63 |
+
raise ValueError(
|
| 64 |
+
f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}"
|
| 65 |
+
)
|
| 66 |
+
h_bar = max(factor, round_by_factor(height, factor))
|
| 67 |
+
w_bar = max(factor, round_by_factor(width, factor))
|
| 68 |
+
|
| 69 |
+
if h_bar * w_bar > max_pixels:
|
| 70 |
+
beta = math.sqrt((height * width) / max_pixels)
|
| 71 |
+
h_bar = round_by_factor(height / beta, factor)
|
| 72 |
+
w_bar = round_by_factor(width / beta, factor)
|
| 73 |
+
elif h_bar * w_bar < min_pixels:
|
| 74 |
+
beta = math.sqrt(min_pixels / (height * width))
|
| 75 |
+
h_bar = round_by_factor(height * beta, factor)
|
| 76 |
+
w_bar = round_by_factor(width * beta, factor)
|
| 77 |
+
return h_bar, w_bar
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None):
|
| 81 |
+
"""Fetch and process an image"""
|
| 82 |
+
if isinstance(image_input, str):
|
| 83 |
+
if image_input.startswith(("http://", "https://")):
|
| 84 |
+
response = requests.get(image_input)
|
| 85 |
+
image = Image.open(BytesIO(response.content)).convert('RGB')
|
| 86 |
+
else:
|
| 87 |
+
image = Image.open(image_input).convert('RGB')
|
| 88 |
+
elif isinstance(image_input, Image.Image):
|
| 89 |
+
image = image_input.convert('RGB')
|
| 90 |
+
else:
|
| 91 |
+
raise ValueError(f"Invalid image input type: {type(image_input)}")
|
| 92 |
+
|
| 93 |
+
if min_pixels is not None or max_pixels is not None:
|
| 94 |
+
min_pixels = min_pixels or MIN_PIXELS
|
| 95 |
+
max_pixels = max_pixels or MAX_PIXELS
|
| 96 |
+
height, width = smart_resize(
|
| 97 |
+
image.height,
|
| 98 |
+
image.width,
|
| 99 |
+
factor=IMAGE_FACTOR,
|
| 100 |
+
min_pixels=min_pixels,
|
| 101 |
+
max_pixels=max_pixels
|
| 102 |
+
)
|
| 103 |
+
image = image.resize((width, height), Image.LANCZOS)
|
| 104 |
+
|
| 105 |
+
return image
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def load_images_from_pdf(pdf_path: str) -> List[Image.Image]:
|
| 109 |
+
"""Load images from PDF file"""
|
| 110 |
+
images = []
|
| 111 |
+
try:
|
| 112 |
+
pdf_document = fitz.open(pdf_path)
|
| 113 |
+
for page_num in range(len(pdf_document)):
|
| 114 |
+
page = pdf_document.load_page(page_num)
|
| 115 |
+
# Convert page to image
|
| 116 |
+
mat = fitz.Matrix(2.0, 2.0) # Increase resolution
|
| 117 |
+
pix = page.get_pixmap(matrix=mat)
|
| 118 |
+
img_data = pix.tobytes("ppm")
|
| 119 |
+
image = Image.open(BytesIO(img_data)).convert('RGB')
|
| 120 |
+
images.append(image)
|
| 121 |
+
pdf_document.close()
|
| 122 |
+
except Exception as e:
|
| 123 |
+
print(f"Error loading PDF: {e}")
|
| 124 |
+
return []
|
| 125 |
+
return images
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def draw_layout_on_image(image: Image.Image, layout_data: List[Dict]) -> Image.Image:
|
| 129 |
+
"""Draw layout bounding boxes on image"""
|
| 130 |
+
img_copy = image.copy()
|
| 131 |
+
draw = ImageDraw.Draw(img_copy)
|
| 132 |
+
|
| 133 |
+
# Colors for different categories
|
| 134 |
+
colors = {
|
| 135 |
+
'Caption': '#FF6B6B',
|
| 136 |
+
'Footnote': '#4ECDC4',
|
| 137 |
+
'Formula': '#45B7D1',
|
| 138 |
+
'List-item': '#96CEB4',
|
| 139 |
+
'Page-footer': '#FFEAA7',
|
| 140 |
+
'Page-header': '#DDA0DD',
|
| 141 |
+
'Picture': '#FFD93D',
|
| 142 |
+
'Section-header': '#6C5CE7',
|
| 143 |
+
'Table': '#FD79A8',
|
| 144 |
+
'Text': '#74B9FF',
|
| 145 |
+
'Title': '#E17055'
|
| 146 |
+
}
|
| 147 |
+
|
| 148 |
+
try:
|
| 149 |
+
# Load a font
|
| 150 |
+
try:
|
| 151 |
+
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 12)
|
| 152 |
+
except Exception:
|
| 153 |
+
font = ImageFont.load_default()
|
| 154 |
+
|
| 155 |
+
for item in layout_data:
|
| 156 |
+
if 'bbox' in item and 'category' in item:
|
| 157 |
+
bbox = item['bbox']
|
| 158 |
+
category = item['category']
|
| 159 |
+
color = colors.get(category, '#000000')
|
| 160 |
+
|
| 161 |
+
# Draw rectangle
|
| 162 |
+
draw.rectangle(bbox, outline=color, width=2)
|
| 163 |
+
|
| 164 |
+
# Draw label
|
| 165 |
+
label = category
|
| 166 |
+
label_bbox = draw.textbbox((0, 0), label, font=font)
|
| 167 |
+
label_width = label_bbox[2] - label_bbox[0]
|
| 168 |
+
label_height = label_bbox[3] - label_bbox[1]
|
| 169 |
+
|
| 170 |
+
# Position label above the box
|
| 171 |
+
label_x = bbox[0]
|
| 172 |
+
label_y = max(0, bbox[1] - label_height - 2)
|
| 173 |
+
|
| 174 |
+
# Draw background for label
|
| 175 |
+
draw.rectangle(
|
| 176 |
+
[label_x, label_y, label_x + label_width + 4, label_y + label_height + 2],
|
| 177 |
+
fill=color
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
# Draw text
|
| 181 |
+
draw.text((label_x + 2, label_y + 1), label, fill='white', font=font)
|
| 182 |
+
|
| 183 |
+
except Exception as e:
|
| 184 |
+
print(f"Error drawing layout: {e}")
|
| 185 |
+
|
| 186 |
+
return img_copy
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
def is_arabic_text(text: str) -> bool:
|
| 190 |
+
"""Check if text in headers and paragraphs contains mostly Arabic characters"""
|
| 191 |
+
if not text:
|
| 192 |
+
return False
|
| 193 |
+
|
| 194 |
+
# Extract text from headers and paragraphs only
|
| 195 |
+
# Match markdown headers (# ## ###) and regular paragraph text
|
| 196 |
+
header_pattern = r'^#{1,6}\s+(.+)$'
|
| 197 |
+
paragraph_pattern = r'^(?!#{1,6}\s|!\[|```|\||\s*[-*+]\s|\s*\d+\.\s)(.+)$'
|
| 198 |
+
|
| 199 |
+
content_text = []
|
| 200 |
+
|
| 201 |
+
for line in text.split('\n'):
|
| 202 |
+
line = line.strip()
|
| 203 |
+
if not line:
|
| 204 |
+
continue
|
| 205 |
+
|
| 206 |
+
# Check for headers
|
| 207 |
+
header_match = re.match(header_pattern, line, re.MULTILINE)
|
| 208 |
+
if header_match:
|
| 209 |
+
content_text.append(header_match.group(1))
|
| 210 |
+
continue
|
| 211 |
+
|
| 212 |
+
# Check for paragraph text (exclude lists, tables, code blocks, images)
|
| 213 |
+
if re.match(paragraph_pattern, line, re.MULTILINE):
|
| 214 |
+
content_text.append(line)
|
| 215 |
+
|
| 216 |
+
if not content_text:
|
| 217 |
+
return False
|
| 218 |
+
|
| 219 |
+
# Join all content text and check for Arabic characters
|
| 220 |
+
combined_text = ' '.join(content_text)
|
| 221 |
+
|
| 222 |
+
# Arabic Unicode ranges
|
| 223 |
+
arabic_chars = 0
|
| 224 |
+
total_chars = 0
|
| 225 |
+
|
| 226 |
+
for char in combined_text:
|
| 227 |
+
if char.isalpha():
|
| 228 |
+
total_chars += 1
|
| 229 |
+
# Arabic script ranges
|
| 230 |
+
if ('\u0600' <= char <= '\u06FF') or ('\u0750' <= char <= '\u077F') or ('\u08A0' <= char <= '\u08FF'):
|
| 231 |
+
arabic_chars += 1
|
| 232 |
+
|
| 233 |
+
if total_chars == 0:
|
| 234 |
+
return False
|
| 235 |
+
|
| 236 |
+
# Consider text as Arabic if more than 50% of alphabetic characters are Arabic
|
| 237 |
+
return (arabic_chars / total_chars) > 0.5
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = 'text') -> str:
|
| 241 |
+
"""Convert layout JSON to markdown format"""
|
| 242 |
+
import base64
|
| 243 |
+
from io import BytesIO
|
| 244 |
+
|
| 245 |
+
markdown_lines = []
|
| 246 |
+
|
| 247 |
+
try:
|
| 248 |
+
# Sort items by reading order (top to bottom, left to right)
|
| 249 |
+
sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0]))
|
| 250 |
+
|
| 251 |
+
for item in sorted_items:
|
| 252 |
+
category = item.get('category', '')
|
| 253 |
+
text = item.get(text_key, '')
|
| 254 |
+
bbox = item.get('bbox', [])
|
| 255 |
+
|
| 256 |
+
if category == 'Picture':
|
| 257 |
+
# Extract image region and embed it
|
| 258 |
+
if bbox and len(bbox) == 4:
|
| 259 |
+
try:
|
| 260 |
+
# Extract the image region
|
| 261 |
+
x1, y1, x2, y2 = bbox
|
| 262 |
+
# Ensure coordinates are within image bounds
|
| 263 |
+
x1, y1 = max(0, int(x1)), max(0, int(y1))
|
| 264 |
+
x2, y2 = min(image.width, int(x2)), min(image.height, int(y2))
|
| 265 |
+
|
| 266 |
+
if x2 > x1 and y2 > y1:
|
| 267 |
+
cropped_img = image.crop((x1, y1, x2, y2))
|
| 268 |
+
|
| 269 |
+
# Convert to base64 for embedding
|
| 270 |
+
buffer = BytesIO()
|
| 271 |
+
cropped_img.save(buffer, format='PNG')
|
| 272 |
+
img_data = base64.b64encode(buffer.getvalue()).decode()
|
| 273 |
+
|
| 274 |
+
# Add as markdown image
|
| 275 |
+
markdown_lines.append(f"\n")
|
| 276 |
+
else:
|
| 277 |
+
markdown_lines.append("\n")
|
| 278 |
+
except Exception as e:
|
| 279 |
+
print(f"Error processing image region: {e}")
|
| 280 |
+
markdown_lines.append("\n")
|
| 281 |
+
else:
|
| 282 |
+
markdown_lines.append("\n")
|
| 283 |
+
elif not text:
|
| 284 |
+
continue
|
| 285 |
+
elif category == 'Title':
|
| 286 |
+
markdown_lines.append(f"# {text}\n")
|
| 287 |
+
elif category == 'Section-header':
|
| 288 |
+
markdown_lines.append(f"## {text}\n")
|
| 289 |
+
elif category == 'Text':
|
| 290 |
+
markdown_lines.append(f"{text}\n")
|
| 291 |
+
elif category == 'List-item':
|
| 292 |
+
markdown_lines.append(f"- {text}\n")
|
| 293 |
+
elif category == 'Table':
|
| 294 |
+
# If text is already HTML, keep it as is
|
| 295 |
+
if text.strip().startswith('<'):
|
| 296 |
+
markdown_lines.append(f"{text}\n")
|
| 297 |
+
else:
|
| 298 |
+
markdown_lines.append(f"**Table:** {text}\n")
|
| 299 |
+
elif category == 'Formula':
|
| 300 |
+
# If text is LaTeX, format it properly
|
| 301 |
+
if text.strip().startswith('$') or '\\' in text:
|
| 302 |
+
markdown_lines.append(f"$$\n{text}\n$$\n")
|
| 303 |
+
else:
|
| 304 |
+
markdown_lines.append(f"**Formula:** {text}\n")
|
| 305 |
+
elif category == 'Caption':
|
| 306 |
+
markdown_lines.append(f"*{text}*\n")
|
| 307 |
+
elif category == 'Footnote':
|
| 308 |
+
markdown_lines.append(f"^{text}^\n")
|
| 309 |
+
elif category in ['Page-header', 'Page-footer']:
|
| 310 |
+
# Skip headers and footers in main content
|
| 311 |
+
continue
|
| 312 |
+
else:
|
| 313 |
+
markdown_lines.append(f"{text}\n")
|
| 314 |
+
|
| 315 |
+
markdown_lines.append("") # Add spacing
|
| 316 |
+
|
| 317 |
+
except Exception as e:
|
| 318 |
+
print(f"Error converting to markdown: {e}")
|
| 319 |
+
return str(layout_data)
|
| 320 |
+
|
| 321 |
+
return "\n".join(markdown_lines)
|
| 322 |
+
|
| 323 |
+
# Initialize model/processor lazily inside GPU context
|
| 324 |
+
model_id = "rednote-hilab/dots.ocr"
|
| 325 |
+
model_path = "./models/dots-ocr-local"
|
| 326 |
+
model = None
|
| 327 |
+
processor = None
|
| 328 |
+
|
| 329 |
+
def ensure_model_loaded():
|
| 330 |
+
"""Lazily download and load model/processor using eager attention (no FlashAttention)."""
|
| 331 |
+
global model, processor
|
| 332 |
+
if model is not None and processor is not None:
|
| 333 |
+
return
|
| 334 |
+
|
| 335 |
+
# Always use eager attention
|
| 336 |
+
attn_impl = "eager"
|
| 337 |
+
# Use GPU if available, otherwise CPU
|
| 338 |
+
if torch.cuda.is_available():
|
| 339 |
+
dtype = torch.bfloat16 # Use bfloat16 on GPU for consistency
|
| 340 |
+
device_map = "auto"
|
| 341 |
+
else:
|
| 342 |
+
dtype = torch.float32
|
| 343 |
+
device_map = "cpu"
|
| 344 |
+
|
| 345 |
+
# Download snapshot locally (idempotent)
|
| 346 |
+
snapshot_download(
|
| 347 |
+
repo_id=model_id,
|
| 348 |
+
local_dir=model_path,
|
| 349 |
+
local_dir_use_symlinks=False,
|
| 350 |
+
)
|
| 351 |
+
|
| 352 |
+
# Load model/processor
|
| 353 |
+
loaded_model = AutoModelForCausalLM.from_pretrained(
|
| 354 |
+
model_path,
|
| 355 |
+
attn_implementation=attn_impl,
|
| 356 |
+
torch_dtype=dtype,
|
| 357 |
+
device_map=device_map,
|
| 358 |
+
trust_remote_code=True,
|
| 359 |
+
low_cpu_mem_usage=True,
|
| 360 |
+
)
|
| 361 |
+
loaded_processor = AutoProcessor.from_pretrained(
|
| 362 |
+
model_path,
|
| 363 |
+
trust_remote_code=True,
|
| 364 |
+
)
|
| 365 |
+
|
| 366 |
+
model = loaded_model
|
| 367 |
+
processor = loaded_processor
|
| 368 |
+
|
| 369 |
+
# Global state variables
|
| 370 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 371 |
+
|
| 372 |
+
# PDF handling state
|
| 373 |
+
pdf_cache = {
|
| 374 |
+
"images": [],
|
| 375 |
+
"current_page": 0,
|
| 376 |
+
"total_pages": 0,
|
| 377 |
+
"file_type": None,
|
| 378 |
+
"is_parsed": False,
|
| 379 |
+
"results": []
|
| 380 |
+
}
|
| 381 |
+
@spaces.GPU(duration=300)
|
| 382 |
+
def inference(image: Image.Image, prompt: str, max_new_tokens: int = 24000) -> str:
|
| 383 |
+
"""Run inference on an image with the given prompt"""
|
| 384 |
+
try:
|
| 385 |
+
ensure_model_loaded()
|
| 386 |
+
if model is None or processor is None:
|
| 387 |
+
raise RuntimeError("Model not loaded. Please check model initialization.")
|
| 388 |
+
|
| 389 |
+
# Prepare messages in the expected format
|
| 390 |
+
messages = [
|
| 391 |
+
{
|
| 392 |
+
"role": "user",
|
| 393 |
+
"content": [
|
| 394 |
+
{
|
| 395 |
+
"type": "image",
|
| 396 |
+
"image": image
|
| 397 |
+
},
|
| 398 |
+
{"type": "text", "text": prompt}
|
| 399 |
+
]
|
| 400 |
+
}
|
| 401 |
+
]
|
| 402 |
+
|
| 403 |
+
# Apply chat template
|
| 404 |
+
text = processor.apply_chat_template(
|
| 405 |
+
messages,
|
| 406 |
+
tokenize=False,
|
| 407 |
+
add_generation_prompt=True
|
| 408 |
+
)
|
| 409 |
+
|
| 410 |
+
# Process vision information
|
| 411 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 412 |
+
|
| 413 |
+
# Prepare inputs
|
| 414 |
+
inputs = processor(
|
| 415 |
+
text=[text],
|
| 416 |
+
images=image_inputs,
|
| 417 |
+
videos=video_inputs,
|
| 418 |
+
padding=True,
|
| 419 |
+
return_tensors="pt",
|
| 420 |
+
)
|
| 421 |
+
|
| 422 |
+
# Move to the model's primary device (works with device_map as well)
|
| 423 |
+
primary_device = next(model.parameters()).device
|
| 424 |
+
inputs = inputs.to(primary_device)
|
| 425 |
+
|
| 426 |
+
# Generate output
|
| 427 |
+
with torch.no_grad():
|
| 428 |
+
generated_ids = model.generate(
|
| 429 |
+
**inputs,
|
| 430 |
+
max_new_tokens=max_new_tokens,
|
| 431 |
+
do_sample=False,
|
| 432 |
+
temperature=0.1
|
| 433 |
+
)
|
| 434 |
+
|
| 435 |
+
# Decode output
|
| 436 |
+
generated_ids_trimmed = [
|
| 437 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 438 |
+
]
|
| 439 |
+
|
| 440 |
+
output_text = processor.batch_decode(
|
| 441 |
+
generated_ids_trimmed,
|
| 442 |
+
skip_special_tokens=True,
|
| 443 |
+
clean_up_tokenization_spaces=False
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
+
return output_text[0] if output_text else ""
|
| 447 |
+
|
| 448 |
+
except Exception as e:
|
| 449 |
+
print(f"Error during inference: {e}")
|
| 450 |
+
traceback.print_exc()
|
| 451 |
+
return f"Error during inference: {str(e)}"
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
@spaces.GPU(duration=300)
|
| 455 |
+
def _generate_text_and_confidence_for_crop(
|
| 456 |
+
image: Image.Image,
|
| 457 |
+
max_new_tokens: int = 128,
|
| 458 |
+
temperature: float = 0.1,
|
| 459 |
+
) -> Tuple[str, float]:
|
| 460 |
+
"""Generate text for a cropped region and compute average per-token confidence from model scores.
|
| 461 |
+
|
| 462 |
+
Returns (generated_text, average_confidence_percent).
|
| 463 |
+
"""
|
| 464 |
+
try:
|
| 465 |
+
ensure_model_loaded()
|
| 466 |
+
# Prepare a concise extraction prompt for the crop
|
| 467 |
+
messages = [
|
| 468 |
+
{
|
| 469 |
+
"role": "user",
|
| 470 |
+
"content": [
|
| 471 |
+
{"type": "image", "image": image},
|
| 472 |
+
{
|
| 473 |
+
"type": "text",
|
| 474 |
+
"text": "Extract the exact text content from this image region. Output text only without translation or additional words.",
|
| 475 |
+
},
|
| 476 |
+
],
|
| 477 |
+
}
|
| 478 |
+
]
|
| 479 |
+
|
| 480 |
+
# Apply chat template
|
| 481 |
+
text = processor.apply_chat_template(
|
| 482 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 483 |
+
)
|
| 484 |
+
|
| 485 |
+
# Process vision information
|
| 486 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 487 |
+
|
| 488 |
+
# Prepare inputs
|
| 489 |
+
inputs = processor(
|
| 490 |
+
text=[text],
|
| 491 |
+
images=image_inputs,
|
| 492 |
+
videos=video_inputs,
|
| 493 |
+
padding=True,
|
| 494 |
+
return_tensors="pt",
|
| 495 |
+
)
|
| 496 |
+
primary_device = next(model.parameters()).device
|
| 497 |
+
inputs = inputs.to(primary_device)
|
| 498 |
+
|
| 499 |
+
# Generate with scores
|
| 500 |
+
with torch.no_grad():
|
| 501 |
+
outputs = model.generate(
|
| 502 |
+
**inputs,
|
| 503 |
+
max_new_tokens=max_new_tokens,
|
| 504 |
+
do_sample=False,
|
| 505 |
+
temperature=temperature,
|
| 506 |
+
output_scores=True,
|
| 507 |
+
return_dict_in_generate=True,
|
| 508 |
+
)
|
| 509 |
+
|
| 510 |
+
sequences = outputs.sequences # [batch, seq_len]
|
| 511 |
+
input_len = inputs.input_ids.shape[1]
|
| 512 |
+
# Trim input prompt ids to isolate generated tokens
|
| 513 |
+
generated_ids = sequences[:, input_len:]
|
| 514 |
+
generated_text = processor.batch_decode(
|
| 515 |
+
generated_ids,
|
| 516 |
+
skip_special_tokens=True,
|
| 517 |
+
clean_up_tokenization_spaces=False,
|
| 518 |
+
)[0].strip()
|
| 519 |
+
|
| 520 |
+
# Compute average probability of chosen tokens
|
| 521 |
+
confidences: List[float] = []
|
| 522 |
+
for step, step_scores in enumerate(outputs.scores or []):
|
| 523 |
+
# step_scores: [batch, vocab]
|
| 524 |
+
probs = torch.nn.functional.softmax(step_scores, dim=-1)
|
| 525 |
+
# token id chosen at this step
|
| 526 |
+
if input_len + step < sequences.shape[1]:
|
| 527 |
+
chosen_ids = sequences[:, input_len + step].unsqueeze(-1)
|
| 528 |
+
chosen_probs = probs.gather(dim=-1, index=chosen_ids) # [batch, 1]
|
| 529 |
+
confidences.append(float(chosen_probs[0, 0].item()))
|
| 530 |
+
|
| 531 |
+
avg_conf_percent = (sum(confidences) / len(confidences) * 100.0) if confidences else 0.0
|
| 532 |
+
return generated_text, avg_conf_percent
|
| 533 |
+
except Exception as e:
|
| 534 |
+
print(f"Error generating crop confidence: {e}")
|
| 535 |
+
traceback.print_exc()
|
| 536 |
+
return "", 0.0
|
| 537 |
+
|
| 538 |
+
|
| 539 |
+
def process_image(
|
| 540 |
+
image: Image.Image,
|
| 541 |
+
min_pixels: Optional[int] = None,
|
| 542 |
+
max_pixels: Optional[int] = None,
|
| 543 |
+
max_new_tokens: int = 24000,
|
| 544 |
+
) -> Dict[str, Any]:
|
| 545 |
+
"""Process a single image with the specified prompt mode"""
|
| 546 |
+
try:
|
| 547 |
+
# Resize image if needed
|
| 548 |
+
if min_pixels is not None or max_pixels is not None:
|
| 549 |
+
image = fetch_image(image, min_pixels=min_pixels, max_pixels=max_pixels)
|
| 550 |
+
|
| 551 |
+
# Run inference with the default prompt
|
| 552 |
+
raw_output = inference(image, prompt, max_new_tokens=max_new_tokens)
|
| 553 |
+
|
| 554 |
+
# Process results based on prompt mode
|
| 555 |
+
result = {
|
| 556 |
+
'original_image': image,
|
| 557 |
+
'raw_output': raw_output,
|
| 558 |
+
'processed_image': image,
|
| 559 |
+
'layout_result': None,
|
| 560 |
+
'markdown_content': None
|
| 561 |
+
}
|
| 562 |
+
|
| 563 |
+
# Try to parse JSON and create visualizations (since we're doing layout analysis)
|
| 564 |
+
try:
|
| 565 |
+
# Try to parse JSON output
|
| 566 |
+
layout_data = json.loads(raw_output)
|
| 567 |
+
|
| 568 |
+
# Compute per-region confidence using the model on each cropped region
|
| 569 |
+
for idx, item in enumerate(layout_data):
|
| 570 |
+
try:
|
| 571 |
+
bbox = item.get('bbox', [])
|
| 572 |
+
text_content = item.get('text', '')
|
| 573 |
+
category = item.get('category', '')
|
| 574 |
+
if (not text_content) or category == 'Picture' or not bbox or len(bbox) != 4:
|
| 575 |
+
continue
|
| 576 |
+
x1, y1, x2, y2 = bbox
|
| 577 |
+
x1, y1 = max(0, int(x1)), max(0, int(y1))
|
| 578 |
+
x2, y2 = min(image.width, int(x2)), min(image.height, int(y2))
|
| 579 |
+
if x2 <= x1 or y2 <= y1:
|
| 580 |
+
continue
|
| 581 |
+
crop_img = image.crop((x1, y1, x2, y2))
|
| 582 |
+
# Generate and score text for this crop; we only keep the confidence
|
| 583 |
+
_, region_conf = _generate_text_and_confidence_for_crop(crop_img)
|
| 584 |
+
item['confidence'] = region_conf
|
| 585 |
+
except Exception as e:
|
| 586 |
+
print(f"Error scoring region {idx}: {e}")
|
| 587 |
+
# Leave confidence absent if scoring fails
|
| 588 |
+
|
| 589 |
+
result['layout_result'] = layout_data
|
| 590 |
+
|
| 591 |
+
# Create visualization with bounding boxes
|
| 592 |
+
try:
|
| 593 |
+
processed_image = draw_layout_on_image(image, layout_data)
|
| 594 |
+
result['processed_image'] = processed_image
|
| 595 |
+
except Exception as e:
|
| 596 |
+
print(f"Error drawing layout: {e}")
|
| 597 |
+
result['processed_image'] = image
|
| 598 |
+
|
| 599 |
+
# Generate markdown from layout data
|
| 600 |
+
try:
|
| 601 |
+
markdown_content = layoutjson2md(image, layout_data, text_key='text')
|
| 602 |
+
result['markdown_content'] = markdown_content
|
| 603 |
+
except Exception as e:
|
| 604 |
+
print(f"Error generating markdown: {e}")
|
| 605 |
+
result['markdown_content'] = raw_output
|
| 606 |
+
|
| 607 |
+
except json.JSONDecodeError:
|
| 608 |
+
print("Failed to parse JSON output, using raw output")
|
| 609 |
+
result['markdown_content'] = raw_output
|
| 610 |
+
|
| 611 |
+
return result
|
| 612 |
+
|
| 613 |
+
except Exception as e:
|
| 614 |
+
print(f"Error processing image: {e}")
|
| 615 |
+
traceback.print_exc()
|
| 616 |
+
return {
|
| 617 |
+
'original_image': image,
|
| 618 |
+
'raw_output': f"Error processing image: {str(e)}",
|
| 619 |
+
'processed_image': image,
|
| 620 |
+
'layout_result': None,
|
| 621 |
+
'markdown_content': f"Error processing image: {str(e)}"
|
| 622 |
+
}
|
| 623 |
+
|
| 624 |
+
|
| 625 |
+
def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]:
|
| 626 |
+
"""Load file for preview (supports PDF and images)"""
|
| 627 |
+
global pdf_cache
|
| 628 |
+
|
| 629 |
+
if not file_path or not os.path.exists(file_path):
|
| 630 |
+
return None, "No file selected"
|
| 631 |
+
|
| 632 |
+
file_ext = os.path.splitext(file_path)[1].lower()
|
| 633 |
+
|
| 634 |
+
try:
|
| 635 |
+
if file_ext == '.pdf':
|
| 636 |
+
# Load PDF pages
|
| 637 |
+
images = load_images_from_pdf(file_path)
|
| 638 |
+
if not images:
|
| 639 |
+
return None, "Failed to load PDF"
|
| 640 |
+
|
| 641 |
+
pdf_cache.update({
|
| 642 |
+
"images": images,
|
| 643 |
+
"current_page": 0,
|
| 644 |
+
"total_pages": len(images),
|
| 645 |
+
"file_type": "pdf",
|
| 646 |
+
"is_parsed": False,
|
| 647 |
+
"results": []
|
| 648 |
+
})
|
| 649 |
+
|
| 650 |
+
return images[0], f"Page 1 / {len(images)}"
|
| 651 |
+
|
| 652 |
+
elif file_ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
|
| 653 |
+
# Load single image
|
| 654 |
+
image = Image.open(file_path).convert('RGB')
|
| 655 |
+
|
| 656 |
+
pdf_cache.update({
|
| 657 |
+
"images": [image],
|
| 658 |
+
"current_page": 0,
|
| 659 |
+
"total_pages": 1,
|
| 660 |
+
"file_type": "image",
|
| 661 |
+
"is_parsed": False,
|
| 662 |
+
"results": []
|
| 663 |
+
})
|
| 664 |
+
|
| 665 |
+
return image, "Page 1 / 1"
|
| 666 |
+
else:
|
| 667 |
+
return None, f"Unsupported file format: {file_ext}"
|
| 668 |
+
|
| 669 |
+
except Exception as e:
|
| 670 |
+
print(f"Error loading file: {e}")
|
| 671 |
+
return None, f"Error loading file: {str(e)}"
|
| 672 |
+
|
| 673 |
+
|
| 674 |
+
def turn_page(direction: str) -> Tuple[Optional[Image.Image], str, List, Any, Optional[Image.Image], Optional[Dict]]:
|
| 675 |
+
"""Navigate through PDF pages and update all relevant outputs."""
|
| 676 |
+
global pdf_cache
|
| 677 |
+
|
| 678 |
+
if not pdf_cache["images"]:
|
| 679 |
+
return None, '<div class="page-info">No file loaded</div>', [], "No results yet", None, None
|
| 680 |
+
|
| 681 |
+
if direction == "prev":
|
| 682 |
+
pdf_cache["current_page"] = max(0, pdf_cache["current_page"] - 1)
|
| 683 |
+
elif direction == "next":
|
| 684 |
+
pdf_cache["current_page"] = min(
|
| 685 |
+
pdf_cache["total_pages"] - 1,
|
| 686 |
+
pdf_cache["current_page"] + 1
|
| 687 |
+
)
|
| 688 |
+
|
| 689 |
+
index = pdf_cache["current_page"]
|
| 690 |
+
current_image_preview = pdf_cache["images"][index]
|
| 691 |
+
page_info_html = f'<div class="page-info">Page {index + 1} / {pdf_cache["total_pages"]}</div>'
|
| 692 |
+
|
| 693 |
+
# Initialize default result values
|
| 694 |
+
markdown_content = "Page not processed yet"
|
| 695 |
+
processed_img = None
|
| 696 |
+
layout_json = None
|
| 697 |
+
ocr_table_data = []
|
| 698 |
+
|
| 699 |
+
# Get results for current page if available
|
| 700 |
+
if (pdf_cache["is_parsed"] and
|
| 701 |
+
index < len(pdf_cache["results"]) and
|
| 702 |
+
pdf_cache["results"][index]):
|
| 703 |
+
|
| 704 |
+
result = pdf_cache["results"][index]
|
| 705 |
+
markdown_content = result.get('markdown_content') or result.get('raw_output', 'No content available')
|
| 706 |
+
processed_img = result.get('processed_image', None) # Get the processed image
|
| 707 |
+
layout_json = result.get('layout_result', None) # Get the layout JSON
|
| 708 |
+
|
| 709 |
+
# Generate OCR table for current page
|
| 710 |
+
if layout_json and result.get('original_image'):
|
| 711 |
+
# Need to import the helper here or move it outside
|
| 712 |
+
import base64
|
| 713 |
+
from io import BytesIO
|
| 714 |
+
|
| 715 |
+
for idx, item in enumerate(layout_json):
|
| 716 |
+
bbox = item.get('bbox', [])
|
| 717 |
+
text = item.get('text', '')
|
| 718 |
+
category = item.get('category', '')
|
| 719 |
+
|
| 720 |
+
if not text or category == 'Picture':
|
| 721 |
+
continue
|
| 722 |
+
|
| 723 |
+
img_html = ""
|
| 724 |
+
if bbox and len(bbox) == 4:
|
| 725 |
+
try:
|
| 726 |
+
x1, y1, x2, y2 = bbox
|
| 727 |
+
orig_img = result['original_image']
|
| 728 |
+
x1, y1 = max(0, int(x1)), max(0, int(y1))
|
| 729 |
+
x2, y2 = min(orig_img.width, int(x2)), min(orig_img.height, int(y2))
|
| 730 |
+
|
| 731 |
+
if x2 > x1 and y2 > y1:
|
| 732 |
+
cropped_img = orig_img.crop((x1, y1, x2, y2))
|
| 733 |
+
buffer = BytesIO()
|
| 734 |
+
cropped_img.save(buffer, format='PNG')
|
| 735 |
+
img_data = base64.b64encode(buffer.getvalue()).decode()
|
| 736 |
+
img_html = f'<img src="data:image/png;base64,{img_data}" style="max-width:200px; max-height:100px; object-fit:contain;" />'
|
| 737 |
+
except Exception as e:
|
| 738 |
+
print(f"Error cropping region {idx}: {e}")
|
| 739 |
+
img_html = f"<div>Region {idx+1}</div>"
|
| 740 |
+
else:
|
| 741 |
+
img_html = f"<div>Region {idx+1}</div>"
|
| 742 |
+
|
| 743 |
+
# Extract confidence from item if available, otherwise N/A
|
| 744 |
+
confidence = item.get('confidence', 'N/A')
|
| 745 |
+
if isinstance(confidence, (int, float)):
|
| 746 |
+
confidence = f"{confidence:.1f}%"
|
| 747 |
+
elif confidence != 'N/A':
|
| 748 |
+
confidence = str(confidence)
|
| 749 |
+
|
| 750 |
+
ocr_table_data.append([img_html, text, confidence])
|
| 751 |
+
|
| 752 |
+
# Check for Arabic text to set RTL property
|
| 753 |
+
if is_arabic_text(markdown_content):
|
| 754 |
+
markdown_update = gr.update(value=markdown_content, rtl=True)
|
| 755 |
+
else:
|
| 756 |
+
markdown_update = markdown_content
|
| 757 |
+
|
| 758 |
+
return current_image_preview, page_info_html, ocr_table_data, markdown_update, processed_img, layout_json
|
| 759 |
+
|
| 760 |
+
|
| 761 |
+
def create_gradio_interface():
|
| 762 |
+
"""Create the Gradio interface"""
|
| 763 |
+
|
| 764 |
+
# Custom CSS
|
| 765 |
+
css = """
|
| 766 |
+
.main-container {
|
| 767 |
+
max-width: 1400px;
|
| 768 |
+
margin: 0 auto;
|
| 769 |
+
}
|
| 770 |
+
|
| 771 |
+
.header-text {
|
| 772 |
+
text-align: center;
|
| 773 |
+
color: #2c3e50;
|
| 774 |
+
margin-bottom: 20px;
|
| 775 |
+
}
|
| 776 |
+
|
| 777 |
+
.process-button {
|
| 778 |
+
border: none !important;
|
| 779 |
+
color: white !important;
|
| 780 |
+
font-weight: bold !important;
|
| 781 |
+
}
|
| 782 |
+
|
| 783 |
+
.process-button:hover {
|
| 784 |
+
transform: translateY(-2px) !important;
|
| 785 |
+
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important;
|
| 786 |
+
}
|
| 787 |
+
|
| 788 |
+
.info-box {
|
| 789 |
+
border: 1px solid #dee2e6;
|
| 790 |
+
border-radius: 8px;
|
| 791 |
+
padding: 15px;
|
| 792 |
+
margin: 10px 0;
|
| 793 |
+
}
|
| 794 |
+
|
| 795 |
+
.page-info {
|
| 796 |
+
text-align: center;
|
| 797 |
+
padding: 8px 16px;
|
| 798 |
+
border-radius: 20px;
|
| 799 |
+
font-weight: bold;
|
| 800 |
+
margin: 10px 0;
|
| 801 |
+
}
|
| 802 |
+
|
| 803 |
+
.model-status {
|
| 804 |
+
padding: 10px;
|
| 805 |
+
border-radius: 8px;
|
| 806 |
+
margin: 10px 0;
|
| 807 |
+
text-align: center;
|
| 808 |
+
font-weight: bold;
|
| 809 |
+
}
|
| 810 |
+
|
| 811 |
+
.status-ready {
|
| 812 |
+
background: #d1edff;
|
| 813 |
+
color: #0c5460;
|
| 814 |
+
border: 1px solid #b8daff;
|
| 815 |
+
}
|
| 816 |
+
"""
|
| 817 |
+
|
| 818 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=css, title="Arabic OCR - Document Text Extraction") as demo:
|
| 819 |
+
|
| 820 |
+
# Header
|
| 821 |
+
gr.HTML("""
|
| 822 |
+
<div class="title" style="text-align: center">
|
| 823 |
+
<h1>🔍 Arabic OCR - Professional Document Text Extraction</h1>
|
| 824 |
+
<p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
|
| 825 |
+
Advanced AI-powered OCR solution for Arabic documents with high accuracy layout detection and text extraction
|
| 826 |
+
</p>
|
| 827 |
+
</div>
|
| 828 |
+
""")
|
| 829 |
+
|
| 830 |
+
# Main interface
|
| 831 |
+
with gr.Row():
|
| 832 |
+
# Left column - Input and controls
|
| 833 |
+
with gr.Column(scale=1):
|
| 834 |
+
|
| 835 |
+
# File input
|
| 836 |
+
file_input = gr.File(
|
| 837 |
+
label="Upload Image or PDF",
|
| 838 |
+
file_types=[".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".pdf"],
|
| 839 |
+
type="filepath"
|
| 840 |
+
)
|
| 841 |
+
|
| 842 |
+
# Image preview
|
| 843 |
+
image_preview = gr.Image(
|
| 844 |
+
label="Preview",
|
| 845 |
+
type="pil",
|
| 846 |
+
interactive=False,
|
| 847 |
+
height=300
|
| 848 |
+
)
|
| 849 |
+
|
| 850 |
+
# Page navigation for PDFs
|
| 851 |
+
with gr.Row():
|
| 852 |
+
prev_page_btn = gr.Button("◀ Previous", size="md")
|
| 853 |
+
page_info = gr.HTML('<div class="page-info">No file loaded</div>')
|
| 854 |
+
next_page_btn = gr.Button("Next ▶", size="md")
|
| 855 |
+
|
| 856 |
+
# Advanced settings
|
| 857 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 858 |
+
max_new_tokens = gr.Slider(
|
| 859 |
+
minimum=1000,
|
| 860 |
+
maximum=32000,
|
| 861 |
+
value=24000,
|
| 862 |
+
step=1000,
|
| 863 |
+
label="Max New Tokens",
|
| 864 |
+
info="Maximum number of tokens to generate"
|
| 865 |
+
)
|
| 866 |
+
|
| 867 |
+
min_pixels = gr.Number(
|
| 868 |
+
value=MIN_PIXELS,
|
| 869 |
+
label="Min Pixels",
|
| 870 |
+
info="Minimum image resolution"
|
| 871 |
+
)
|
| 872 |
+
|
| 873 |
+
max_pixels = gr.Number(
|
| 874 |
+
value=MAX_PIXELS,
|
| 875 |
+
label="Max Pixels",
|
| 876 |
+
info="Maximum image resolution"
|
| 877 |
+
)
|
| 878 |
+
|
| 879 |
+
# Process button
|
| 880 |
+
process_btn = gr.Button(
|
| 881 |
+
"🚀 Process Document",
|
| 882 |
+
variant="primary",
|
| 883 |
+
elem_classes=["process-button"],
|
| 884 |
+
size="lg"
|
| 885 |
+
)
|
| 886 |
+
|
| 887 |
+
# Clear button
|
| 888 |
+
clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
|
| 889 |
+
|
| 890 |
+
# Right column - Results
|
| 891 |
+
with gr.Column(scale=2):
|
| 892 |
+
|
| 893 |
+
# Results tabs
|
| 894 |
+
with gr.Tabs():
|
| 895 |
+
# Processed image tab
|
| 896 |
+
with gr.Tab("🖼️ Processed Image"):
|
| 897 |
+
processed_image = gr.Image(
|
| 898 |
+
label="Image with Layout Detection",
|
| 899 |
+
type="pil",
|
| 900 |
+
interactive=False,
|
| 901 |
+
height=500
|
| 902 |
+
)
|
| 903 |
+
# Editable OCR Results Table
|
| 904 |
+
with gr.Tab("📊 OCR Results Table"):
|
| 905 |
+
gr.Markdown("### Editable OCR Results\nReview and edit the extracted text for each detected region")
|
| 906 |
+
ocr_table = gr.Dataframe(
|
| 907 |
+
headers=["Region Image", "Extracted Text", "Confidence"],
|
| 908 |
+
datatype=["html", "str", "str"],
|
| 909 |
+
label="OCR Results",
|
| 910 |
+
interactive=True,
|
| 911 |
+
wrap=True
|
| 912 |
+
)
|
| 913 |
+
# Markdown output tab
|
| 914 |
+
with gr.Tab("📝 Extracted Content"):
|
| 915 |
+
markdown_output = gr.Markdown(
|
| 916 |
+
value="Click 'Process Document' to see extracted content...",
|
| 917 |
+
height=500
|
| 918 |
+
)
|
| 919 |
+
# JSON layout tab
|
| 920 |
+
with gr.Tab("📋 Layout JSON"):
|
| 921 |
+
json_output = gr.JSON(
|
| 922 |
+
label="Layout Analysis Results",
|
| 923 |
+
value=None
|
| 924 |
+
)
|
| 925 |
+
|
| 926 |
+
# Helper function to create OCR table
|
| 927 |
+
def create_ocr_table(image: Image.Image, layout_data: List[Dict]) -> List[List[str]]:
|
| 928 |
+
"""Create table data from layout results with cropped images"""
|
| 929 |
+
import base64
|
| 930 |
+
from io import BytesIO
|
| 931 |
+
|
| 932 |
+
if not layout_data:
|
| 933 |
+
return []
|
| 934 |
+
|
| 935 |
+
table_data = []
|
| 936 |
+
|
| 937 |
+
for idx, item in enumerate(layout_data):
|
| 938 |
+
bbox = item.get('bbox', [])
|
| 939 |
+
text = item.get('text', '')
|
| 940 |
+
category = item.get('category', '')
|
| 941 |
+
|
| 942 |
+
# Skip items without text or Picture category
|
| 943 |
+
if not text or category == 'Picture':
|
| 944 |
+
continue
|
| 945 |
+
|
| 946 |
+
# Crop the image region
|
| 947 |
+
img_html = ""
|
| 948 |
+
if bbox and len(bbox) == 4:
|
| 949 |
+
try:
|
| 950 |
+
x1, y1, x2, y2 = bbox
|
| 951 |
+
# Ensure coordinates are within image bounds
|
| 952 |
+
x1, y1 = max(0, int(x1)), max(0, int(y1))
|
| 953 |
+
x2, y2 = min(image.width, int(x2)), min(image.height, int(y2))
|
| 954 |
+
|
| 955 |
+
if x2 > x1 and y2 > y1:
|
| 956 |
+
cropped_img = image.crop((x1, y1, x2, y2))
|
| 957 |
+
|
| 958 |
+
# Convert to base64 for HTML display
|
| 959 |
+
buffer = BytesIO()
|
| 960 |
+
cropped_img.save(buffer, format='PNG')
|
| 961 |
+
img_data = base64.b64encode(buffer.getvalue()).decode()
|
| 962 |
+
|
| 963 |
+
# Create HTML img tag
|
| 964 |
+
img_html = f'<img src="data:image/png;base64,{img_data}" style="max-width:200px; max-height:100px; object-fit:contain;" />'
|
| 965 |
+
except Exception as e:
|
| 966 |
+
print(f"Error cropping region {idx}: {e}")
|
| 967 |
+
img_html = f"<div>Region {idx+1}</div>"
|
| 968 |
+
else:
|
| 969 |
+
img_html = f"<div>Region {idx+1}</div>"
|
| 970 |
+
|
| 971 |
+
# Add confidence score - extract from item if available, otherwise N/A
|
| 972 |
+
confidence = item.get('confidence', 'N/A')
|
| 973 |
+
if isinstance(confidence, (int, float)):
|
| 974 |
+
confidence = f"{confidence:.1f}%"
|
| 975 |
+
elif confidence != 'N/A':
|
| 976 |
+
confidence = str(confidence)
|
| 977 |
+
|
| 978 |
+
# Add row to table
|
| 979 |
+
table_data.append([img_html, text, confidence])
|
| 980 |
+
|
| 981 |
+
return table_data
|
| 982 |
+
|
| 983 |
+
# Event handlers
|
| 984 |
+
@spaces.GPU(duration=240)
|
| 985 |
+
def process_document(file_path, max_tokens, min_pix, max_pix):
|
| 986 |
+
"""Process the uploaded document"""
|
| 987 |
+
global pdf_cache
|
| 988 |
+
|
| 989 |
+
try:
|
| 990 |
+
# Ensure model/processor are loaded within GPU context
|
| 991 |
+
ensure_model_loaded()
|
| 992 |
+
if not file_path:
|
| 993 |
+
return None, [], "Please upload a file first.", None
|
| 994 |
+
|
| 995 |
+
if model is None:
|
| 996 |
+
return None, [], "Model not loaded. Please refresh the page and try again.", None
|
| 997 |
+
|
| 998 |
+
# Load and preview file
|
| 999 |
+
image, page_info = load_file_for_preview(file_path)
|
| 1000 |
+
if image is None:
|
| 1001 |
+
return None, [], page_info, None
|
| 1002 |
+
|
| 1003 |
+
# Process the image(s)
|
| 1004 |
+
if pdf_cache["file_type"] == "pdf":
|
| 1005 |
+
# Process all pages for PDF
|
| 1006 |
+
all_results = []
|
| 1007 |
+
all_markdown = []
|
| 1008 |
+
|
| 1009 |
+
for i, img in enumerate(pdf_cache["images"]):
|
| 1010 |
+
result = process_image(
|
| 1011 |
+
img,
|
| 1012 |
+
min_pixels=int(min_pix) if min_pix else None,
|
| 1013 |
+
max_pixels=int(max_pix) if max_pix else None,
|
| 1014 |
+
max_new_tokens=int(max_tokens) if max_tokens else 24000,
|
| 1015 |
+
)
|
| 1016 |
+
all_results.append(result)
|
| 1017 |
+
if result.get('markdown_content'):
|
| 1018 |
+
all_markdown.append(f"## Page {i+1}\n\n{result['markdown_content']}")
|
| 1019 |
+
|
| 1020 |
+
pdf_cache["results"] = all_results
|
| 1021 |
+
pdf_cache["is_parsed"] = True
|
| 1022 |
+
|
| 1023 |
+
# Show results for first page
|
| 1024 |
+
first_result = all_results[0]
|
| 1025 |
+
combined_markdown = "\n\n---\n\n".join(all_markdown)
|
| 1026 |
+
|
| 1027 |
+
# Check if the combined markdown contains mostly Arabic text
|
| 1028 |
+
if is_arabic_text(combined_markdown):
|
| 1029 |
+
markdown_update = gr.update(value=combined_markdown, rtl=True)
|
| 1030 |
+
else:
|
| 1031 |
+
markdown_update = combined_markdown
|
| 1032 |
+
|
| 1033 |
+
# Create OCR table for first page
|
| 1034 |
+
ocr_table_data = []
|
| 1035 |
+
if first_result['layout_result']:
|
| 1036 |
+
ocr_table_data = create_ocr_table(
|
| 1037 |
+
first_result['original_image'],
|
| 1038 |
+
first_result['layout_result']
|
| 1039 |
+
)
|
| 1040 |
+
|
| 1041 |
+
return (
|
| 1042 |
+
first_result['processed_image'],
|
| 1043 |
+
ocr_table_data,
|
| 1044 |
+
markdown_update,
|
| 1045 |
+
first_result['layout_result']
|
| 1046 |
+
)
|
| 1047 |
+
else:
|
| 1048 |
+
# Process single image
|
| 1049 |
+
result = process_image(
|
| 1050 |
+
image,
|
| 1051 |
+
min_pixels=int(min_pix) if min_pix else None,
|
| 1052 |
+
max_pixels=int(max_pix) if max_pix else None,
|
| 1053 |
+
max_new_tokens=int(max_tokens) if max_tokens else 24000,
|
| 1054 |
+
)
|
| 1055 |
+
|
| 1056 |
+
pdf_cache["results"] = [result]
|
| 1057 |
+
pdf_cache["is_parsed"] = True
|
| 1058 |
+
|
| 1059 |
+
# Check if the content contains mostly Arabic text
|
| 1060 |
+
content = result['markdown_content'] or "No content extracted"
|
| 1061 |
+
if is_arabic_text(content):
|
| 1062 |
+
markdown_update = gr.update(value=content, rtl=True)
|
| 1063 |
+
else:
|
| 1064 |
+
markdown_update = content
|
| 1065 |
+
|
| 1066 |
+
# Create OCR table
|
| 1067 |
+
ocr_table_data = []
|
| 1068 |
+
if result['layout_result']:
|
| 1069 |
+
ocr_table_data = create_ocr_table(
|
| 1070 |
+
result['original_image'],
|
| 1071 |
+
result['layout_result']
|
| 1072 |
+
)
|
| 1073 |
+
|
| 1074 |
+
return (
|
| 1075 |
+
result['processed_image'],
|
| 1076 |
+
ocr_table_data,
|
| 1077 |
+
markdown_update,
|
| 1078 |
+
result['layout_result']
|
| 1079 |
+
)
|
| 1080 |
+
|
| 1081 |
+
except Exception as e:
|
| 1082 |
+
error_msg = f"Error processing document: {str(e)}"
|
| 1083 |
+
print(error_msg)
|
| 1084 |
+
traceback.print_exc()
|
| 1085 |
+
return None, [], error_msg, None
|
| 1086 |
+
|
| 1087 |
+
def handle_file_upload(file_path):
|
| 1088 |
+
"""Handle file upload and show preview"""
|
| 1089 |
+
if not file_path:
|
| 1090 |
+
return None, "No file loaded"
|
| 1091 |
+
|
| 1092 |
+
image, page_info = load_file_for_preview(file_path)
|
| 1093 |
+
return image, page_info
|
| 1094 |
+
|
| 1095 |
+
def handle_page_turn(direction):
|
| 1096 |
+
"""Handle page navigation"""
|
| 1097 |
+
image, page_info, result = turn_page(direction)
|
| 1098 |
+
return image, page_info, result
|
| 1099 |
+
|
| 1100 |
+
def clear_all():
|
| 1101 |
+
"""Clear all data and reset interface"""
|
| 1102 |
+
global pdf_cache
|
| 1103 |
+
|
| 1104 |
+
pdf_cache = {
|
| 1105 |
+
"images": [], "current_page": 0, "total_pages": 0,
|
| 1106 |
+
"file_type": None, "is_parsed": False, "results": []
|
| 1107 |
+
}
|
| 1108 |
+
|
| 1109 |
+
return (
|
| 1110 |
+
None, # file_input
|
| 1111 |
+
None, # image_preview
|
| 1112 |
+
'<div class="page-info">No file loaded</div>', # page_info
|
| 1113 |
+
None, # processed_image
|
| 1114 |
+
[], # ocr_table
|
| 1115 |
+
"Click 'Process Document' to see extracted content...", # markdown_output
|
| 1116 |
+
None, # json_output
|
| 1117 |
+
)
|
| 1118 |
+
|
| 1119 |
+
# Wire up event handlers
|
| 1120 |
+
file_input.change(
|
| 1121 |
+
handle_file_upload,
|
| 1122 |
+
inputs=[file_input],
|
| 1123 |
+
outputs=[image_preview, page_info]
|
| 1124 |
+
)
|
| 1125 |
+
|
| 1126 |
+
# The outputs list is now updated to include all components that need to change
|
| 1127 |
+
prev_page_btn.click(
|
| 1128 |
+
lambda: turn_page("prev"),
|
| 1129 |
+
outputs=[image_preview, page_info, ocr_table, markdown_output, processed_image, json_output]
|
| 1130 |
+
)
|
| 1131 |
+
|
| 1132 |
+
next_page_btn.click(
|
| 1133 |
+
lambda: turn_page("next"),
|
| 1134 |
+
outputs=[image_preview, page_info, ocr_table, markdown_output, processed_image, json_output]
|
| 1135 |
+
)
|
| 1136 |
+
|
| 1137 |
+
process_btn.click(
|
| 1138 |
+
process_document,
|
| 1139 |
+
inputs=[file_input, max_new_tokens, min_pixels, max_pixels],
|
| 1140 |
+
outputs=[processed_image, ocr_table, markdown_output, json_output]
|
| 1141 |
+
)
|
| 1142 |
+
|
| 1143 |
+
# The outputs list for the clear button is now correct
|
| 1144 |
+
clear_btn.click(
|
| 1145 |
+
clear_all,
|
| 1146 |
+
outputs=[
|
| 1147 |
+
file_input, image_preview, page_info, processed_image,
|
| 1148 |
+
ocr_table, markdown_output, json_output
|
| 1149 |
+
]
|
| 1150 |
+
)
|
| 1151 |
+
|
| 1152 |
+
return demo
|
| 1153 |
+
|
| 1154 |
+
|
| 1155 |
+
if __name__ == "__main__":
|
| 1156 |
+
# Create and launch the interface
|
| 1157 |
+
demo = create_gradio_interface()
|
| 1158 |
+
demo.queue(max_size=10).launch(
|
| 1159 |
+
server_name="0.0.0.0",
|
| 1160 |
+
server_port=7860,
|
| 1161 |
+
share=False,
|
| 1162 |
+
debug=True,
|
| 1163 |
+
show_error=True
|
| 1164 |
+
)
|