zero2story / modules /image_maker.py
chansung's picture
update
936d161
raw
history blame
14.9 kB
from typing import Literal
from pathlib import Path
import uuid
import json
import re
import asyncio
import toml
import torch
from compel import Compel
from diffusers import (
DiffusionPipeline,
StableDiffusionPipeline,
AutoencoderKL,
DPMSolverMultistepScheduler,
DDPMScheduler,
DPMSolverSinglestepScheduler,
DPMSolverSDEScheduler,
DEISMultistepScheduler,
)
from .utils import (
set_all_seeds,
)
from .palmchat import (
palm_prompts,
gen_text,
)
_gpus = 0
class ImageMaker:
# TODO: DocString...
"""Class for generating images from prompts."""
__ratio = {'3:2': [768, 512],
'4:3': [680, 512],
'16:9': [912, 512],
'1:1': [512, 512],
'9:16': [512, 912],
'3:4': [512, 680],
'2:3': [512, 768]}
__allocated = False
def __init__(self, model_base: str,
clip_skip: int = 2,
sampling: Literal['sde-dpmsolver++'] = 'sde-dpmsolver++',
vae: str = None,
safety: bool = True,
variant: str = None,
from_hf: bool = False,
device: str = None) -> None:
"""Initialize the ImageMaker class.
Args:
model_base (str): Filename of the model base.
clip_skip (int, optional): Number of layers to skip in the clip model. Defaults to 2.
sampling (Literal['sde-dpmsolver++'], optional): Sampling method. Defaults to 'sde-dpmsolver++'.
vae (str, optional): Filename of the VAE model. Defaults to None.
safety (bool, optional): Whether to use the safety checker. Defaults to True.
variant (str, optional): Variant of the model. Defaults to None.
from_hf (bool, optional): Whether to load the model from HuggingFace. Defaults to False.
device (str, optional): Device to use for the model. Defaults to None.
"""
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if not device else device
self.__model_base = model_base
self.__clip_skip = clip_skip
self.__sampling = sampling
self.__vae = vae
self.__safety = safety
self.__variant = variant
self.__from_hf = from_hf
print("Loading the Stable Diffusion model into memory...")
if not self.__from_hf:
# from file
self.__sd_model = StableDiffusionPipeline.from_single_file(self.model_base,
torch_dtype=torch.float16,
use_safetensors=True,
)
# Clip Skip
self.__sd_model.text_encoder.text_model.encoder.layers = self.__sd_model.text_encoder.text_model.encoder.layers[:12 - (self.clip_skip - 1)]
# Sampling method
if True: # TODO: Sampling method :: self.sampling == 'sde-dpmsolver++'
scheduler = DPMSolverMultistepScheduler.from_config(self.__sd_model.scheduler.config)
scheduler.config.algorithm_type = 'sde-dpmsolver++'
self.__sd_model.scheduler = scheduler
# VAE
if self.vae:
vae_model = AutoencoderKL.from_single_file(self.vae, use_safetensors=True)
self.__sd_model.vae = vae_model.to(dtype=torch.float16)
# Safety checker
if not self.safety:
self.__sd_model.safety_checker = None
self.__sd_model.requires_safety_checker = False
else:
# from huggingface
self.__sd_model = StableDiffusionPipeline.from_pretrained(self.model_base,
variant=self.__variant,
use_safetensors=True)
print(f"Loaded model to {self.device}")
self.__sd_model = self.__sd_model.to(self.device)
# Text Encoder using Compel
self.__compel_proc = Compel(tokenizer=self.__sd_model.tokenizer, text_encoder=self.__sd_model.text_encoder, truncate_long_prompts=False)
output_dir = Path('.') / 'outputs'
if not output_dir.exists():
output_dir.mkdir(parents=True, exist_ok=True)
elif output_dir.is_file():
assert False, f"A file with the same name as the desired directory ('{str(output_dir)}') already exists."
def text2image(self,
prompt: str, neg_prompt: str = None,
ratio: Literal['3:2', '4:3', '16:9', '1:1', '9:16', '3:4', '2:3'] = '1:1',
step: int = 28,
cfg: float = 4.5,
seed: int = None) -> str:
"""Generate an image from the prompt.
Args:
prompt (str): Prompt for the image generation.
neg_prompt (str, optional): Negative prompt for the image generation. Defaults to None.
ratio (Literal['3:2', '4:3', '16:9', '1:1', '9:16', '3:4', '2:3'], optional): Ratio of the generated image. Defaults to '1:1'.
step (int, optional): Number of iterations for the diffusion. Defaults to 20.
cfg (float, optional): Configuration for the diffusion. Defaults to 7.5.
seed (int, optional): Seed for the random number generator. Defaults to None.
Returns:
str: Path to the generated image.
"""
output_filename = Path('.') / 'outputs' / str(uuid.uuid4())
if not seed or seed == -1:
seed = torch.randint(0, 2**32 - 1, (1,)).item()
set_all_seeds(seed)
width, height = self.__ratio[ratio]
prompt_embeds, negative_prompt_embeds = self.__get_pipeline_embeds(prompt, neg_prompt or self.neg_prompt)
# Generate the image
result = self.__sd_model(prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
guidance_scale=cfg,
num_inference_steps=step,
width=width,
height=height,
)
if self.__safety and result.nsfw_content_detected[0]:
print("=== NSFW Content Detected ===")
raise ValueError("Potential NSFW content was detected in one or more images.")
img = result.images[0]
img.save(str(output_filename.with_suffix('.png')))
return str(output_filename.with_suffix('.png'))
def generate_character_prompts(self, character_name: str, age: str, job: str,
keywords: list[str] = None,
creative_mode: Literal['sd character', 'cartoon', 'realistic'] = 'cartoon') -> tuple[str, str]:
"""Generate positive and negative prompts for a character based on given attributes.
Args:
character_name (str): Character's name.
age (str): Age of the character.
job (str): The profession or job of the character.
keywords (list[str]): List of descriptive words for the character.
Returns:
tuple[str, str]: A tuple of positive and negative prompts.
"""
positive = "" # add static prompt for character if needed (e.g. "chibi, cute, anime")
negative = palm_prompts['image_gen']['neg_prompt']
# Generate prompts with PaLM
t = palm_prompts['image_gen']['character']['gen_prompt']
q = palm_prompts['image_gen']['character']['query']
query_string = t.format(input=q.format(character_name=character_name,
job=job,
age=age,
keywords=', '.join(keywords) if keywords else 'Nothing'))
try:
response, response_txt = asyncio.run(asyncio.wait_for(
gen_text(query_string, mode="text", use_filter=False),
timeout=10)
)
except asyncio.TimeoutError:
raise TimeoutError("The response time for PaLM API exceeded the limit.")
except:
raise Exception("PaLM API is not available.")
try:
res_json = json.loads(response_txt)
positive = (res_json['primary_sentence'] if not positive else f"{positive}, {res_json['primary_sentence']}") + ", "
gender_keywords = ['1man', '1woman', '1boy', '1girl', '1male', '1female', '1gentleman', '1lady']
positive += ', '.join([w if w not in gender_keywords else w + '+++' for w in res_json['descriptors']])
positive = f'{job.lower()}+'.join(positive.split(job.lower()))
except:
print("=== PaLM Response ===")
print(response.filters)
print(response_txt)
print("=== PaLM Response ===")
raise ValueError("The response from PaLM API is not in the expected format.")
return (positive.lower(), negative.lower())
def generate_background_prompts(self, genre:str, place:str, mood:str,
title:str, chapter_title:str, chapter_plot:str) -> tuple[str, str]:
"""Generate positive and negative prompts for a background image based on given attributes.
Args:
genre (str): Genre of the story.
place (str): Place of the story.
mood (str): Mood of the story.
title (str): Title of the story.
chapter_title (str): Title of the chapter.
chapter_plot (str): Plot of the chapter.
Returns:
tuple[str, str]: A tuple of positive and negative prompts.
"""
positive = "painting+++, anime+, catoon, watercolor, wallpaper, text---" # add static prompt for background if needed (e.g. "chibi, cute, anime")
negative = "realistic, human, character, people, photograph, 3d render, blurry, grayscale, oversaturated, " + palm_prompts['image_gen']['neg_prompt']
# Generate prompts with PaLM
t = palm_prompts['image_gen']['background']['gen_prompt']
q = palm_prompts['image_gen']['background']['query']
query_string = t.format(input=q.format(genre=genre,
place=place,
mood=mood,
title=title,
chapter_title=chapter_title,
chapter_plot=chapter_plot))
try:
response, response_txt = asyncio.run(asyncio.wait_for(
gen_text(query_string, mode="text", use_filter=False),
timeout=10)
)
except asyncio.TimeoutError:
raise TimeoutError("The response time for PaLM API exceeded the limit.")
except:
raise Exception("PaLM API is not available.")
try:
res_json = json.loads(response_txt)
positive = (res_json['primary_sentence'] if not positive else f"{positive}, {res_json['primary_sentence']}") + ", "
positive += ', '.join(res_json['descriptors'])
except:
print("=== PaLM Response ===")
print(response.filters)
print(response_txt)
print("=== PaLM Response ===")
raise ValueError("The response from PaLM API is not in the expected format.")
return (positive.lower(), negative.lower())
def __get_pipeline_embeds(self, prompt:str, negative_prompt:str) -> tuple[torch.Tensor, torch.Tensor]:
"""
Get pipeline embeds for prompts bigger than the maxlength of the pipeline
Args:
prompt (str): Prompt for the image generation.
neg_prompt (str): Negative prompt for the image generation.
Returns:
tuple[torch.Tensor, torch.Tensor]: A tuple of positive and negative prompt embeds.
"""
conditioning = self.__compel_proc.build_conditioning_tensor(prompt)
negative_conditioning = self.__compel_proc.build_conditioning_tensor(negative_prompt)
return self.__compel_proc.pad_conditioning_tensors_to_same_length([conditioning, negative_conditioning])
def push_to_hub(self, repo_id:str, commit_message:str=None, token:str=None, variant:str=None):
self.__sd_model.push_to_hub(repo_id, commit_message=commit_message, token=token, variant=variant)
@property
def model_base(self):
"""Model base
Returns:
str: The model base (read-only)
"""
return self.__model_base
@property
def clip_skip(self):
"""Clip Skip
Returns:
int: The number of layers to skip in the clip model (read-only)
"""
return self.__clip_skip
@property
def sampling(self):
"""Sampling method
Returns:
Literal['sde-dpmsolver++']: The sampling method (read-only)
"""
return self.__sampling
@property
def vae(self):
"""VAE
Returns:
str: The VAE (read-only)
"""
return self.__vae
@property
def safety(self):
"""Safety checker
Returns:
bool: Whether to use the safety checker (read-only)
"""
return self.__safety
@property
def device(self):
"""Device
Returns:
str: The device (read-only)
"""
return self.__device
@device.setter
def device(self, value):
if self.__allocated:
raise RuntimeError("Cannot change device after the model is loaded.")
if value == 'cpu':
self.__device = value
else:
global _gpus
self.__device = f'{value}:{_gpus}'
max_gpu = torch.cuda.device_count()
_gpus = (_gpus + 1) if (_gpus + 1) < max_gpu else 0
self.__allocated = True
@property
def neg_prompt(self):
"""Negative prompt
Returns:
str: The negative prompt
"""
return self.__neg_prompt
@neg_prompt.setter
def neg_prompt(self, value):
if not value:
self.__neg_prompt = ""
else:
self.__neg_prompt = value