Spaces:
Sleeping
Sleeping
import os | |
import tarfile | |
import wandb | |
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
import tensorflow as tf | |
from transformers import ViTFeatureExtractor | |
PRETRAIN_CHECKPOINT = "google/vit-base-patch16-224-in21k" | |
feature_extractor = ViTFeatureExtractor.from_pretrained(PRETRAIN_CHECKPOINT) | |
WB_KEY = os.environ['WB_KEY'] | |
MODEL = None | |
RESOLTUION = 224 | |
labels = [] | |
with open(r"labels.txt", "r") as fp: | |
for line in fp: | |
labels.append(line[:-1]) | |
def normalize_img( | |
img, mean=feature_extractor.image_mean, std=feature_extractor.image_std | |
): | |
img = img / 255 | |
mean = tf.constant(mean) | |
std = tf.constant(std) | |
return (img - mean) / std | |
def preprocess_input(image): | |
image = np.array(image) | |
image = tf.convert_to_tensor(image) | |
image = tf.image.resize(image, (RESOLTUION, RESOLTUION)) | |
image = normalize_img(image) | |
image = tf.transpose( | |
image, (2, 0, 1) | |
) # Since HF models are channel-first. | |
return { | |
"pixel_values": tf.expand_dims(image, 0) | |
} | |
def get_predictions(image): | |
global MODEL | |
if MODEL is None: | |
wandb.login(key=WB_KEY) | |
wandb.init(project="tfx-vit-pipeline", id="gvtyqdgn", resume=True) | |
path = wandb.use_artifact('tfx-vit-pipeline/final_model:1688113391', type='model').download() | |
tar = tarfile.open(f"{path}/model.tar.gz") | |
tar.extractall(path=".") | |
MODEL = tf.keras.models.load_model("./model") | |
preprocessed_image = preprocess_input(image) | |
prediction = MODEL.predict(preprocessed_image) | |
probs = tf.nn.softmax(prediction['logits'], axis=1) | |
confidences = {labels[i]: float(probs[0][i]) for i in range(3)} | |
return confidences | |
with gr.Blocks() as demo: | |
gr.Markdown("## Simple demo for a Image Classification of the Beans Dataset with HF ViT model") | |
with gr.Row(): | |
image_if = gr.Image() | |
label_if = gr.Label(num_top_classes=3) | |
classify_if = gr.Button() | |
classify_if.click( | |
get_predictions, | |
image_if, | |
label_if | |
) | |
gr.Examples( | |
[["test_image1.jpeg"], ["test_image2.jpeg"], ["test_image3.jpeg"]], | |
[image_if], | |
[label_if], | |
get_predictions, | |
cache_examples=True | |
) | |
demo.launch(debug=True) |