chansung's picture
Update app.py
0934f7b
raw
history blame
10.6 kB
import gradio as gr
import pandas as pd
from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import tensorflow as tf
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
feature_extractor = SegformerFeatureExtractor.from_pretrained(
"nvidia/segformer-b5-finetuned-ade-640-640"
)
model = TFSegformerForSemanticSegmentation.from_pretrained(
"nvidia/segformer-b5-finetuned-ade-640-640"
)
def ade_palette():
"""ADE20K palette that maps each class to RGB values."""
return [
[120, 120, 120],
[180, 120, 120],
[6, 230, 230],
[80, 50, 50],
[4, 200, 3],
[120, 120, 80],
[140, 140, 140],
[204, 5, 255],
[230, 230, 230],
[4, 250, 7],
[224, 5, 255],
[235, 255, 7],
[150, 5, 61],
[120, 120, 70],
[8, 255, 51],
[255, 6, 82],
[143, 255, 140],
[204, 255, 4],
[255, 51, 7],
[204, 70, 3],
[0, 102, 200],
[61, 230, 250],
[255, 6, 51],
[11, 102, 255],
[255, 7, 71],
[255, 9, 224],
[9, 7, 230],
[220, 220, 220],
[255, 9, 92],
[112, 9, 255],
[8, 255, 214],
[7, 255, 224],
[255, 184, 6],
[10, 255, 71],
[255, 41, 10],
[7, 255, 255],
[224, 255, 8],
[102, 8, 255],
[255, 61, 6],
[255, 194, 7],
[255, 122, 8],
[0, 255, 20],
[255, 8, 41],
[255, 5, 153],
[6, 51, 255],
[235, 12, 255],
[160, 150, 20],
[0, 163, 255],
[140, 140, 140],
[250, 10, 15],
[20, 255, 0],
[31, 255, 0],
[255, 31, 0],
[255, 224, 0],
[153, 255, 0],
[0, 0, 255],
[255, 71, 0],
[0, 235, 255],
[0, 173, 255],
[31, 0, 255],
[11, 200, 200],
[255, 82, 0],
[0, 255, 245],
[0, 61, 255],
[0, 255, 112],
[0, 255, 133],
[255, 0, 0],
[255, 163, 0],
[255, 102, 0],
[194, 255, 0],
[0, 143, 255],
[51, 255, 0],
[0, 82, 255],
[0, 255, 41],
[0, 255, 173],
[10, 0, 255],
[173, 255, 0],
[0, 255, 153],
[255, 92, 0],
[255, 0, 255],
[255, 0, 245],
[255, 0, 102],
[255, 173, 0],
[255, 0, 20],
[255, 184, 184],
[0, 31, 255],
[0, 255, 61],
[0, 71, 255],
[255, 0, 204],
[0, 255, 194],
[0, 255, 82],
[0, 10, 255],
[0, 112, 255],
[51, 0, 255],
[0, 194, 255],
[0, 122, 255],
[0, 255, 163],
[255, 153, 0],
[0, 255, 10],
[255, 112, 0],
[143, 255, 0],
[82, 0, 255],
[163, 255, 0],
[255, 235, 0],
[8, 184, 170],
[133, 0, 255],
[0, 255, 92],
[184, 0, 255],
[255, 0, 31],
[0, 184, 255],
[0, 214, 255],
[255, 0, 112],
[92, 255, 0],
[0, 224, 255],
[112, 224, 255],
[70, 184, 160],
[163, 0, 255],
[153, 0, 255],
[71, 255, 0],
[255, 0, 163],
[255, 204, 0],
[255, 0, 143],
[0, 255, 235],
[133, 255, 0],
[255, 0, 235],
[245, 0, 255],
[255, 0, 122],
[255, 245, 0],
[10, 190, 212],
[214, 255, 0],
[0, 204, 255],
[20, 0, 255],
[255, 255, 0],
[0, 153, 255],
[0, 41, 255],
[0, 255, 204],
[41, 0, 255],
[41, 255, 0],
[173, 0, 255],
[0, 245, 255],
[71, 0, 255],
[122, 0, 255],
[0, 255, 184],
[0, 92, 255],
[184, 255, 0],
[0, 133, 255],
[255, 214, 0],
[25, 194, 194],
[102, 255, 0],
[92, 0, 255],
]
labels_list = [
'wall',
'building;edifice',
'sky',
'floor;flooring',
'tree',
'ceiling',
'road;route',
'bed',
'windowpane;window',
'grass',
'cabinet',
'sidewalk;pavement',
'person;individual;someone;somebody;mortal;soul',
'earth;ground',
'door;double;door',
'table',
'mountain;mount',
'plant;flora;plant;life',
'curtain;drape;drapery;mantle;pall',
'chair',
'car;auto;automobile;machine;motorcar',
'water',
'painting;picture',
'sofa;couch;lounge',
'shelf',
'house',
'sea',
'mirror',
'rug;carpet;carpeting',
'field',
'armchair',
'seat',
'fence;fencing',
'desk',
'rock;stone',
'wardrobe;closet;press',
'lamp',
'bathtub;bathing;tub;bath;tub',
'railing;rail',
'cushion',
'base;pedestal;stand',
'box',
'column;pillar',
'signboard;sign',
'chest;of;drawers;chest;bureau;dresser',
'counter',
'sand',
'sink',
'skyscraper',
'fireplace;hearth;open;fireplace',
'refrigerator;icebox',
'grandstand;covered;stand',
'path',
'stairs;steps',
'runway',
'case;display;case;showcase;vitrine',
'pool;table;billiard;table;snooker;table',
'pillow',
'screen;door;screen',
'stairway;staircase',
'river',
'bridge;span',
'bookcase',
'blind;screen',
'coffee;table;cocktail;table',
'toilet;can;commode;crapper;pot;potty;stool;throne',
'flower',
'book',
'hill',
'bench',
'countertop',
'stove;kitchen;stove;range;kitchen;range;cooking;stove',
'palm;palm;tree',
'kitchen;island',
'computer;computing;machine;computing;device;data;processor;electronic;computer;information;processing;system',
'swivel;chair',
'boat',
'bar',
'arcade;machine',
'hovel;hut;hutch;shack;shanty',
'bus;autobus;coach;charabanc;double-decker;jitney;motorbus;motorcoach;omnibus;passenger;vehicle',
'towel',
'light;light;source',
'truck;motortruck',
'tower',
'chandelier;pendant;pendent',
'awning;sunshade;sunblind',
'streetlight;street;lamp',
'booth;cubicle;stall;kiosk',
'television;television;receiver;television;set;tv;tv;set;idiot;box;boob;tube;telly;goggle;box',
'airplane;aeroplane;plane',
'dirt;track',
'apparel;wearing;apparel;dress;clothes',
'pole',
'land;ground;soil',
'bannister;banister;balustrade;balusters;handrail',
'escalator;moving;staircase;moving;stairway',
'ottoman;pouf;pouffe;puff;hassock',
'bottle',
'buffet;counter;sideboard',
'poster;posting;placard;notice;bill;card',
'stage',
'van',
'ship',
'fountain',
'conveyer;belt;conveyor;belt;conveyer;conveyor;transporter',
'canopy',
'washer;automatic;washer;washing;machine',
'plaything;toy',
'swimming;pool;swimming;bath;natatorium',
'stool',
'barrel;cask',
'basket;handbasket',
'waterfall;falls',
'tent;collapsible;shelter',
'bag',
'minibike;motorbike',
'cradle',
'oven',
'ball',
'food;solid;food',
'step;stair',
'tank;storage;tank',
'trade;name;brand;name;brand;marque',
'microwave;microwave;oven',
'pot;flowerpot',
'animal;animate;being;beast;brute;creature;fauna',
'bicycle;bike;wheel;cycle',
'lake',
'dishwasher;dish;washer;dishwashing;machine',
'screen;silver;screen;projection;screen',
'blanket;cover',
'sculpture',
'hood;exhaust;hood',
'sconce',
'vase',
'traffic;light;traffic;signal;stoplight',
'tray',
'ashcan;trash;can;garbage;can;wastebin;ash;bin;ash-bin;ashbin;dustbin;trash;barrel;trash;bin',
'fan',
'pier;wharf;wharfage;dock',
'crt;screen',
'plate',
'monitor;monitoring;device',
'bulletin;board;notice;board',
'shower',
'radiator',
'glass;drinking;glass',
'clock',
'flag']
def label_to_color_image(label):
"""Adds color defined by the dataset colormap to the label.
Args:
label: A 2D array with integer type, storing the segmentation label.
Returns:
result: A 2D array with floating type. The element of the array
is the color indexed by the corresponding element in the input label
to the PASCAL color map.
Raises:
ValueError: If label is not of rank 2 or its value is larger than color
map maximum entry.
"""
if label.ndim != 2:
raise ValueError("Expect 2-D input label")
colormap = np.asarray(ade_palette())
if np.max(label) >= len(colormap):
raise ValueError("label value too large.")
return colormap[label]
def draw_plot(pred_img, seg):
fig = plt.figure(figsize=(20, 15))
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
plt.subplot(grid_spec[0])
plt.imshow(pred_img)
plt.axis('off')
LABEL_NAMES = np.asarray(labels_list)
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
unique_labels = np.unique(seg.numpy().astype("uint8"))
ax = plt.subplot(grid_spec[1])
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
ax.yaxis.tick_right()
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
plt.xticks([], [])
ax.tick_params(width=0.0, labelsize=25)
return fig
def sepia(input_img):
input_img = Image.fromarray(input_img)
inputs = feature_extractor(images=input_img, return_tensors="tf")
outputs = model(**inputs)
logits = outputs.logits
logits = tf.transpose(logits, [0, 2, 3, 1])
logits = tf.image.resize(
logits, input_img.size[::-1]
) # We reverse the shape of `image` because `image.size` returns width and height.
seg = tf.math.argmax(logits, axis=-1)[0]
color_seg = np.zeros(
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
) # height, width, 3
palette = np.array(ade_palette())
for label, color in enumerate(palette):
color_seg[seg == label, :] = color
# Convert to BGR
color_seg = color_seg[..., ::-1]
# Show image + mask
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
pred_img = pred_img.astype(np.uint8)
fig = draw_plot(pred_img, seg)
return fig
demo = gr.Interface(sepia, gr.Image(shape=(200, 200)), outputs=['plot'], examples=["ADE_val_00000001.jpeg"])
demo.launch()