Spaces:
Runtime error
Runtime error
upload v1687488717 model
Browse files- .ipynb_checkpoints/README-checkpoint.md +13 -0
- .ipynb_checkpoints/app-checkpoint.py +46 -0
- .ipynb_checkpoints/requirements-checkpoint.txt +3 -0
- README.md +18 -5
- app.py +46 -0
- requirements.txt +3 -0
.ipynb_checkpoints/README-checkpoint.md
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: KerasNLP GPT2 Alpaca
|
| 3 |
+
emoji: π
|
| 4 |
+
colorFrom: red
|
| 5 |
+
colorTo: yellow
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 3.35.2
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
.ipynb_checkpoints/app-checkpoint.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Text, Any, Dict, Optional
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import tensorflow as tf
|
| 5 |
+
import tensorflow_text
|
| 6 |
+
from tensorflow.python.saved_model import tag_constants
|
| 7 |
+
from huggingface_hub import Repository
|
| 8 |
+
|
| 9 |
+
local_path = "hf_model"
|
| 10 |
+
|
| 11 |
+
model_version = "v1687488717"
|
| 12 |
+
model_repo_id = "chansung/kerasnlp-gpt2-alpaca-pipeline"
|
| 13 |
+
model_repo_url = f"https://huggingface.co/{model_repo_id}"
|
| 14 |
+
|
| 15 |
+
def _clone_and_checkout(repo_url: str, local_path: str, version: str) -> Repository:
|
| 16 |
+
repository = Repository(
|
| 17 |
+
local_dir=local_path, clone_from=repo_url
|
| 18 |
+
)
|
| 19 |
+
repository.git_checkout(revision=version)
|
| 20 |
+
return repository
|
| 21 |
+
|
| 22 |
+
_ = _clone_and_checkout(model_repo_url, local_path, model_version)
|
| 23 |
+
model = tf.saved_model.load(local_path, tags=[tag_constants.SERVING])
|
| 24 |
+
gpt_lm_predict_fn = model.signatures["serving_default"]
|
| 25 |
+
|
| 26 |
+
def gen_text(prompt, max_length=512):
|
| 27 |
+
prompt = tf.constant(f"### Instruction:\n{prompt}\n\n### Response:\n")
|
| 28 |
+
max_length = tf.constant(max_length, dtype="int64")
|
| 29 |
+
|
| 30 |
+
result = gpt_lm_predict_fn(
|
| 31 |
+
prompt=prompt,
|
| 32 |
+
max_length=max_length,
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
return result['result'].numpy().decode('UTF-8').split("### Response:")[-1].strip()
|
| 36 |
+
|
| 37 |
+
with gr.Blocks() as demo:
|
| 38 |
+
instruction = gr.Textbox("Instruction")
|
| 39 |
+
output = gr.Textbox("Output", lines=5)
|
| 40 |
+
|
| 41 |
+
instruction.submit(
|
| 42 |
+
lambda prompt: gen_text(prompt),
|
| 43 |
+
instruction, output
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
demo.launch()
|
.ipynb_checkpoints/requirements-checkpoint.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
tensorflow
|
| 2 |
+
tensorflow_text
|
| 3 |
+
huggingface_hub
|
README.md
CHANGED
|
@@ -1,12 +1,25 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.35.2
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: KerasNLP GPT2 Alpaca
|
| 3 |
+
emoji: π
|
| 4 |
+
colorFrom: red
|
| 5 |
+
colorTo: yellow
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.35.2
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference---
|
| 14 |
+
title: KerasNLP GPT2 Alpaca
|
| 15 |
+
emoji: π
|
| 16 |
+
colorFrom: red
|
| 17 |
+
colorTo: yellow
|
| 18 |
+
sdk: gradio
|
| 19 |
+
sdk_version: 3.35.2
|
| 20 |
+
app_file: app.py
|
| 21 |
+
pinned: false
|
| 22 |
+
license: apache-2.0
|
| 23 |
+
---
|
| 24 |
+
|
| 25 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Text, Any, Dict, Optional
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import tensorflow as tf
|
| 5 |
+
import tensorflow_text
|
| 6 |
+
from tensorflow.python.saved_model import tag_constants
|
| 7 |
+
from huggingface_hub import Repository
|
| 8 |
+
|
| 9 |
+
local_path = "hf_model"
|
| 10 |
+
|
| 11 |
+
model_version = "v1687488717"
|
| 12 |
+
model_repo_id = "chansung/kerasnlp-gpt2-alpaca-pipeline"
|
| 13 |
+
model_repo_url = f"https://huggingface.co/{model_repo_id}"
|
| 14 |
+
|
| 15 |
+
def _clone_and_checkout(repo_url: str, local_path: str, version: str) -> Repository:
|
| 16 |
+
repository = Repository(
|
| 17 |
+
local_dir=local_path, clone_from=repo_url
|
| 18 |
+
)
|
| 19 |
+
repository.git_checkout(revision=version)
|
| 20 |
+
return repository
|
| 21 |
+
|
| 22 |
+
_ = _clone_and_checkout(model_repo_url, local_path, model_version)
|
| 23 |
+
model = tf.saved_model.load(local_path, tags=[tag_constants.SERVING])
|
| 24 |
+
gpt_lm_predict_fn = model.signatures["serving_default"]
|
| 25 |
+
|
| 26 |
+
def gen_text(prompt, max_length=512):
|
| 27 |
+
prompt = tf.constant(f"### Instruction:\n{prompt}\n\n### Response:\n")
|
| 28 |
+
max_length = tf.constant(max_length, dtype="int64")
|
| 29 |
+
|
| 30 |
+
result = gpt_lm_predict_fn(
|
| 31 |
+
prompt=prompt,
|
| 32 |
+
max_length=max_length,
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
return result['result'].numpy().decode('UTF-8').split("### Response:")[-1].strip()
|
| 36 |
+
|
| 37 |
+
with gr.Blocks() as demo:
|
| 38 |
+
instruction = gr.Textbox("Instruction")
|
| 39 |
+
output = gr.Textbox("Output", lines=5)
|
| 40 |
+
|
| 41 |
+
instruction.submit(
|
| 42 |
+
lambda prompt: gen_text(prompt),
|
| 43 |
+
instruction, output
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
tensorflow
|
| 2 |
+
tensorflow_text
|
| 3 |
+
huggingface_hub
|