e5-demo / app.py
chansung's picture
Update app.py
d6b297a
raw
history blame
3.88 kB
import json
import torch
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
import gradio as gr
# instantiate tokenizer and model
def get_model(base_name='intfloat/e5-large-v2'):
tokenizer = AutoTokenizer.from_pretrained(base_name)
model = AutoModel.from_pretrained(base_name)
return tokenizer, model
# get normalized scores on input_texts, the final scores are
# reported without queries, and the number of queries should
# be denoted as in how_many_q
def get_scores(model, tokenizer, input_texts, max_length=512, how_many_q=1):
# Tokenize the input texts
batch_dict = tokenizer(
input_texts,
max_length=max_length,
padding=True,
truncation=True,
return_tensors='pt'
)
outputs = model(**batch_dict)
embeddings = average_pool(
outputs.last_hidden_state, batch_dict['attention_mask']
)
# (Optionally) normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:how_many_q] @ embeddings[how_many_q:].T) * 100
return scores
# get top n results out of the scores. This
# function only returns the scores and indices
def get_top(scores, top_k=None):
result = torch.sort(scores, descending=True, dim=1)
top_indices = result.indices
top_values = result.values
if top_k:
top_indices = top_indices[:, :top_k]
top_values = top_values[:, :top_k]
return top_indices, top_values
# get top n results out of the scores. This function
# returns scores and indices along with the associated text
def get_human_readable_top(scores, input_texts, top_k=None):
input_texts = list(filter(lambda text: "query:" not in text, input_texts))
top_indices, top_values = get_top(scores, top_k)
result = {}
for input_idx, (indices, values) in enumerate(zip(top_indices, top_values)):
q = input_texts[input_idx]
a = []
for idx, val in zip(indices.tolist(), values.tolist()):
a.append({
"idx": idx,
"val": round(val, 3),
"text": input_texts[idx]
})
result[q] = a
return result
def average_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
def get_result(q_txt, p_txt1, p_txt2, p_txt3, p_txt4, p_txt5):
input_texts = [
f"query: {q_txt}"
]
if p_txt1 != '':
input_txt.append(f"passage: {p_txt1}")
if p_txt2 != '':
input_txt.append(f"passage: {p_txt2}")
if p_txt3 != '':
input_txt.append(f"passage: {p_txt3}")
if p_txt4 != '':
input_txt.append(f"passage: {p_txt4}")
if p_txt5 != '':
input_txt.append(f"passage: {p_txt5}")
scores = get_scores(model, tokenizer, input_texts)
result = get_human_readable_top(scores, input_texts)
return json.dumps(result, indent=4)
tokenizer, model = get_model('intfloat/e5-large-v2')
with gr.Blocks() as demo:
gr.Markdown("# E5 Large V2 Demo")
q_txt = gr.Textbox(placeholder="Enter your query", info="Query")
p_txt1 = gr.Textbox(placeholder="Enter passage 1", info="Passage 1")
p_txt2 = gr.Textbox(placeholder="Enter passage 2", info="Passage 2")
p_txt3 = gr.Textbox(placeholder="Enter passage 3", info="Passage 3")
p_txt4 = gr.Textbox(placeholder="Enter passage 4", info="Passage 4")
p_txt5 = gr.Textbox(placeholder="Enter passage 5", info="Passage 5")
submit = gr.Button("Submit")
o_txt = gr.Textbox(placeholder="Output", lines=10, interactive=False)
submit.click(
get_result,
[q_txt, p_txt1, p_txt2, p_txt3, p_txt4, p_txt5],
o_txt
)
demo.launch()