|
|
|
|
|
|
|
from contextvars import ContextVar |
|
|
|
from typing import Optional, Tuple, Type |
|
from dataclasses import dataclass |
|
import math |
|
|
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
import bitsandbytes as bnb |
|
|
|
import tqdm |
|
|
|
|
|
@dataclass |
|
class ModelArgs: |
|
dim: int = 512 |
|
n_layers: int = 8 |
|
n_heads: int = 8 |
|
vocab_size: int = -1 |
|
multiple_of: int = 256 |
|
norm_eps: float = 1e-5 |
|
|
|
max_batch_size: int = 32 |
|
max_seq_len: int = 1024 |
|
|
|
|
|
class RMSNorm(torch.nn.Module): |
|
def __init__(self, dim: int, eps: float = 1e-6): |
|
super().__init__() |
|
self.eps = eps |
|
self.weight = nn.Parameter(torch.ones(dim)) |
|
|
|
def _norm(self, x): |
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) |
|
|
|
def forward(self, x): |
|
output = self._norm(x.float()).type_as(x) |
|
return output * self.weight |
|
|
|
|
|
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0): |
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) |
|
t = torch.arange(end, device=freqs.device) |
|
freqs = torch.outer(t, freqs).float() |
|
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) |
|
return freqs_cis |
|
|
|
|
|
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): |
|
ndim = x.ndim |
|
assert 0 <= 1 < ndim |
|
assert freqs_cis.shape == (x.shape[1], x.shape[-1]) |
|
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] |
|
return freqs_cis.view(*shape) |
|
|
|
|
|
def apply_rotary_emb( |
|
xq: torch.Tensor, |
|
xk: torch.Tensor, |
|
freqs_cis: torch.Tensor, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) |
|
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) |
|
freqs_cis = reshape_for_broadcast(freqs_cis, xq_) |
|
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) |
|
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) |
|
return xq_out.type_as(xq), xk_out.type_as(xk) |
|
|
|
|
|
class UninitializedLinear(nn.Linear): |
|
def reset_parameters(self) -> None: |
|
pass |
|
|
|
|
|
class InferenceQuantizedLinear(bnb.nn.Linear8bitLt): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(has_fp16_weights=False, *args, **kwargs) |
|
|
|
def reset_parameters(self) -> None: |
|
pass |
|
|
|
|
|
default_quantize: ContextVar[bool] = ContextVar("default_quantize", default=False) |
|
|
|
|
|
def get_linear_class() -> Type[nn.Linear]: |
|
if default_quantize.get(): |
|
return InferenceQuantizedLinear |
|
return UninitializedLinear |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, args: ModelArgs): |
|
super().__init__() |
|
|
|
self.n_local_heads = ( |
|
args.n_heads // 1 |
|
) |
|
self.head_dim = args.dim // args.n_heads |
|
|
|
Linear = get_linear_class() |
|
self.wq = Linear( |
|
args.dim, |
|
args.n_heads * self.head_dim, |
|
bias=False, |
|
) |
|
self.wk = Linear( |
|
args.dim, |
|
args.n_heads * self.head_dim, |
|
bias=False, |
|
) |
|
self.wv = Linear( |
|
args.dim, |
|
args.n_heads * self.head_dim, |
|
bias=False, |
|
) |
|
self.wo = Linear( |
|
args.dim, |
|
args.n_heads * self.head_dim, |
|
bias=False, |
|
) |
|
|
|
self.cache_k = torch.zeros( |
|
(args.max_batch_size, args.max_seq_len, self.n_local_heads, self.head_dim) |
|
).cuda() |
|
self.cache_v = torch.zeros( |
|
(args.max_batch_size, args.max_seq_len, self.n_local_heads, self.head_dim) |
|
).cuda() |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
start_pos: int, |
|
freqs_cis: torch.Tensor, |
|
mask: Optional[torch.Tensor], |
|
): |
|
bsz, seqlen, _ = x.shape |
|
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) |
|
|
|
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim) |
|
xk = xk.view(bsz, seqlen, self.n_local_heads, self.head_dim) |
|
xv = xv.view(bsz, seqlen, self.n_local_heads, self.head_dim) |
|
|
|
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis) |
|
|
|
self.cache_k = self.cache_k.to(xq) |
|
self.cache_v = self.cache_v.to(xq) |
|
|
|
self.cache_k[:bsz, start_pos : start_pos + seqlen] = xk |
|
self.cache_v[:bsz, start_pos : start_pos + seqlen] = xv |
|
|
|
keys = self.cache_k[:bsz, : start_pos + seqlen] |
|
values = self.cache_v[:bsz, : start_pos + seqlen] |
|
|
|
xq = xq.transpose(1, 2) |
|
keys = keys.transpose(1, 2) |
|
values = values.transpose(1, 2) |
|
scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
if mask is not None: |
|
scores = scores + mask |
|
scores = F.softmax(scores.float(), dim=-1).type_as(xq) |
|
output = torch.matmul(scores, values) |
|
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1) |
|
|
|
return self.wo(output) |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
hidden_dim: int, |
|
multiple_of: int, |
|
): |
|
super().__init__() |
|
hidden_dim = int(2 * hidden_dim / 3) |
|
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) |
|
|
|
Linear = get_linear_class() |
|
self.w1 = Linear(dim, hidden_dim, bias=False) |
|
self.w2 = Linear( |
|
hidden_dim, |
|
dim, |
|
bias=False, |
|
) |
|
self.w3 = Linear( |
|
dim, |
|
hidden_dim, |
|
bias=False, |
|
) |
|
|
|
def forward(self, x): |
|
return self.w2(F.silu(self.w1(x)) * self.w3(x)) |
|
|
|
|
|
class TransformerBlock(nn.Module): |
|
def __init__(self, layer_id: int, args: ModelArgs): |
|
super().__init__() |
|
self.n_heads = args.n_heads |
|
self.dim = args.dim |
|
self.head_dim = args.dim // args.n_heads |
|
self.attention = Attention(args) |
|
self.feed_forward = FeedForward( |
|
dim=args.dim, hidden_dim=4 * args.dim, multiple_of=args.multiple_of |
|
) |
|
self.layer_id = layer_id |
|
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps) |
|
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
start_pos: int, |
|
freqs_cis: torch.Tensor, |
|
mask: Optional[torch.Tensor], |
|
): |
|
h = x + self.attention.forward( |
|
self.attention_norm(x), start_pos, freqs_cis, mask |
|
) |
|
out = h + self.feed_forward.forward(self.ffn_norm(h)) |
|
return out |
|
|
|
|
|
def convert_linear_to_bnb(float_linear): |
|
new_layer = InferenceQuantizedLinear( |
|
float_linear.in_features, |
|
float_linear.out_features, |
|
bias=float_linear.bias is not None, |
|
) |
|
new_layer._parameters["weight"] = bnb.nn.Int8Params( |
|
float_linear.weight.data.cpu(), |
|
requires_grad=False, |
|
has_fp16_weights=False, |
|
) |
|
if float_linear.bias is not None: |
|
new_layer._parameters["bias"] = float_linear.bias |
|
return new_layer |
|
|
|
|
|
class Transformer(nn.Module): |
|
def __init__(self, params: ModelArgs): |
|
super().__init__() |
|
self.params = params |
|
self.vocab_size = params.vocab_size |
|
self.n_layers = params.n_layers |
|
|
|
self.tok_embeddings = torch.nn.Embedding(params.vocab_size, params.dim) |
|
|
|
self.layers = torch.nn.ModuleList() |
|
for layer_id in range(params.n_layers): |
|
self.layers.append(TransformerBlock(layer_id, params)) |
|
|
|
self.norm = RMSNorm(params.dim, eps=params.norm_eps) |
|
|
|
Linear = get_linear_class() |
|
self.output = Linear(params.dim, params.vocab_size, bias=False) |
|
|
|
self.freqs_cis = precompute_freqs_cis( |
|
self.params.dim // self.params.n_heads, self.params.max_seq_len * 2 |
|
) |
|
|
|
@torch.inference_mode() |
|
def forward(self, tokens: torch.Tensor, start_pos: int): |
|
_bsz, seqlen = tokens.shape |
|
h = self.tok_embeddings(tokens) |
|
self.freqs_cis = self.freqs_cis.to(h.device) |
|
freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen] |
|
|
|
mask = None |
|
if seqlen > 1: |
|
mask = torch.full( |
|
(1, 1, seqlen, seqlen), float("-inf"), device=tokens.device |
|
) |
|
mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h) |
|
|
|
for layer in self.layers: |
|
h = layer(h, start_pos, freqs_cis, mask) |
|
h = self.norm(h) |
|
output = self.output(h[:, -1, :]) |
|
return output.float() |
|
|
|
def quantize(self): |
|
|
|
def get_layer(model, name): |
|
layer = model |
|
for attr in name.split("."): |
|
layer = getattr(layer, attr) |
|
return layer |
|
|
|
def set_layer(model, name, layer): |
|
try: |
|
attrs, name = name.rsplit(".", 1) |
|
model = get_layer(model, attrs) |
|
except ValueError: |
|
pass |
|
setattr(model, name, layer) |
|
|
|
linear_layers = { |
|
k: v for k, v in self.named_modules() if isinstance(v, nn.Linear) |
|
} |
|
|
|
print("Quantizing", len(linear_layers), "layers") |
|
for name, layer in tqdm.tqdm(linear_layers.items()): |
|
new_layer = convert_linear_to_bnb(layer) |
|
set_layer(self, name, new_layer) |
|
self.cuda() |