Spaces:
Runtime error
Runtime error
import torch | |
import transformers | |
from peft import PeftModel | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
def load_model( | |
base, | |
finetuned, | |
mode_8bit, | |
mode_4bit, | |
force_download_ckpt, | |
model_cls, | |
tokenizer_cls | |
): | |
if tokenizer_cls is None: | |
tokenizer_cls = AutoTokenizer | |
else: | |
tokenizer_cls = eval(tokenizer_cls) | |
if model_cls is None: | |
model_cls = AutoModelForCausalLM | |
else: | |
model_cls = eval(model_cls) | |
print(f"tokenizer_cls: {tokenizer_cls}") | |
print(f"model_cls: {model_cls}") | |
tokenizer = tokenizer_cls.from_pretrained(base) | |
tokenizer.padding_side = "left" | |
model = model_cls.from_pretrained( | |
base, | |
load_in_8bit=mode_8bit, | |
load_in_4bit=mode_4bit, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
) | |
if finetuned is not None and \ | |
finetuned != "" and \ | |
finetuned != "N/A": | |
model = PeftModel.from_pretrained( | |
model, | |
finetuned, | |
# force_download=force_download_ckpt, | |
device_map={'': 0} | |
) | |
return model, tokenizer |