Spaces:
Runtime error
Runtime error
Chaninder Rishi
commited on
Commit
·
a30e7d0
1
Parent(s):
daa2a54
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import csv
|
4 |
+
import json
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import ast
|
7 |
+
from sklearn import linear_model
|
8 |
+
|
9 |
+
|
10 |
+
df = pd.read_csv('emily_election.csv')
|
11 |
+
|
12 |
+
|
13 |
+
df['runtime'] = df['cumulative_ad_runtime'].apply(lambda s: int(s.split('days')[0]))
|
14 |
+
df['impressions'] = df['cumulative_impressions_by_region'].apply(lambda d: ast.literal_eval(d))
|
15 |
+
df['impressions'] = df['impressions'].apply(lambda d: np.array(list(d.values())).sum())
|
16 |
+
|
17 |
+
#feature 3 (for later)
|
18 |
+
df['audience_size'] = df['cumulative_est_audience'].apply(lambda d: ast.literal_eval(d))
|
19 |
+
df['audience_size'] = df['audience_size'].apply(lambda d: np.array(list(d.values())).sum())
|
20 |
+
|
21 |
+
#data = df[['runtime', 'spend', 'impressions']]
|
22 |
+
data = df[['runtime', 'spend', 'audience_size','impressions']]
|
23 |
+
|
24 |
+
msk = np.random.rand(len(data)) < 0.8
|
25 |
+
train = data[msk]
|
26 |
+
test = data[~msk]
|
27 |
+
|
28 |
+
|
29 |
+
#new_train = train[train['impressions'] < 1000000]
|
30 |
+
new_train = train[(train['spend'] > 250)]
|
31 |
+
new_train = new_train[new_train['runtime']>4]
|
32 |
+
new_train.shape
|
33 |
+
|
34 |
+
|
35 |
+
#this model predicts impressions given the runtime and the spend
|
36 |
+
|
37 |
+
regr = linear_model.LinearRegression()
|
38 |
+
new_train['log_runtime'] = np.log(new_train['runtime'])
|
39 |
+
new_train['log_spend'] = np.log(new_train['spend'])
|
40 |
+
new_train['log_impressions'] = np.log(new_train['impressions'])
|
41 |
+
new_train.replace([np.inf, -np.inf], np.nan, inplace=True)
|
42 |
+
new_train.dropna(inplace=True)
|
43 |
+
x = np.asanyarray(new_train[['log_runtime', 'log_spend']])
|
44 |
+
y = np.asanyarray(new_train[['log_impressions']])
|
45 |
+
regr.fit (x, y)
|
46 |
+
y_pred= regr.predict(new_train[['log_runtime', 'log_spend']])
|
47 |
+
# # The coefficients
|
48 |
+
print(regr.coef_)
|
49 |
+
print('R-squared score: %.2f' % regr.score(x, y))
|
50 |
+
print('Standard Deviation: %.2f' % np.sqrt(sum((y - y_pred)**2) / (len(y) - 2)))
|
51 |
+
|
52 |
+
|
53 |
+
|