Spaces:
Runtime error
Runtime error
Chaninder Rishi
commited on
Commit
•
4df6604
1
Parent(s):
ac7df46
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
import csv
|
@@ -15,7 +15,7 @@ df = pd.read_csv('emily_election.csv')
|
|
15 |
|
16 |
#loaded_model = pickle.load(open(filename, 'rb'))
|
17 |
|
18 |
-
|
19 |
df['runtime'] = df['cumulative_ad_runtime'].apply(lambda s: int(s.split('days')[0]))
|
20 |
df['impressions'] = df['cumulative_impressions_by_region'].apply(lambda d: ast.literal_eval(d))
|
21 |
df['impressions'] = df['impressions'].apply(lambda d: np.array(list(d.values())).sum())
|
@@ -33,12 +33,11 @@ test = data[~msk]
|
|
33 |
|
34 |
|
35 |
#new_train = train[train['impressions'] < 1000000]
|
36 |
-
train['spend'] =
|
37 |
|
38 |
|
39 |
new_train = train[(train['spend'] > 250)]
|
40 |
new_train = new_train[new_train['runtime']>4]
|
41 |
-
new_train.shape
|
42 |
|
43 |
|
44 |
#this model predicts impressions given the runtime and the spend
|
@@ -49,17 +48,14 @@ new_train['log_spend'] = np.log(new_train['spend'])
|
|
49 |
new_train['log_impressions'] = np.log(new_train['impressions'])
|
50 |
new_train.replace([np.inf, -np.inf], np.nan, inplace=True)
|
51 |
new_train.dropna(inplace=True)
|
|
|
52 |
x = np.asanyarray(new_train[['log_runtime', 'log_spend']])
|
53 |
y = np.asanyarray(new_train[['log_impressions']])
|
54 |
-
print(x)
|
55 |
-
regr.fit(x, y)
|
56 |
-
#y_pred= regr.predict(new_train[['log_runtime', 'log_spend']])
|
57 |
-
|
58 |
-
|
59 |
-
# # The coefficients
|
60 |
-
#print(regr.coef_)
|
61 |
-
#print('R-squared score: %.2f' % regr.score(x, y))
|
62 |
-
#print('Standard Deviation: %.2f' % np.sqrt(sum((y - y_pred)**2) / (len(y) - 2)))
|
63 |
-
|
64 |
|
|
|
|
|
|
|
65 |
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
import csv
|
|
|
15 |
|
16 |
#loaded_model = pickle.load(open(filename, 'rb'))
|
17 |
|
18 |
+
df['spend'] = df['cum_spend']
|
19 |
df['runtime'] = df['cumulative_ad_runtime'].apply(lambda s: int(s.split('days')[0]))
|
20 |
df['impressions'] = df['cumulative_impressions_by_region'].apply(lambda d: ast.literal_eval(d))
|
21 |
df['impressions'] = df['impressions'].apply(lambda d: np.array(list(d.values())).sum())
|
|
|
33 |
|
34 |
|
35 |
#new_train = train[train['impressions'] < 1000000]
|
36 |
+
train['spend'] = train['spend'].astype('float')
|
37 |
|
38 |
|
39 |
new_train = train[(train['spend'] > 250)]
|
40 |
new_train = new_train[new_train['runtime']>4]
|
|
|
41 |
|
42 |
|
43 |
#this model predicts impressions given the runtime and the spend
|
|
|
48 |
new_train['log_impressions'] = np.log(new_train['impressions'])
|
49 |
new_train.replace([np.inf, -np.inf], np.nan, inplace=True)
|
50 |
new_train.dropna(inplace=True)
|
51 |
+
print(new_train.to_string())
|
52 |
x = np.asanyarray(new_train[['log_runtime', 'log_spend']])
|
53 |
y = np.asanyarray(new_train[['log_impressions']])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
regr.fit(x, y)
|
56 |
+
spend = st.number_input('Enter Spend (in dollars): ')
|
57 |
+
runtime = st.number_input('Enter runtime (in days)')
|
58 |
|
59 |
+
if spend and runtime:
|
60 |
+
pred= regr.predict([np.log([spend, runtime])])
|
61 |
+
st.write('70% confidence interval for number of impressions is: {} to {} hits'.format(int(np.exp(pred[0][0]-1.65)), int(np.exp(pred[0][0]+1.65))))
|