|
import streamlit as st |
|
from datasets import load_dataset |
|
import pandas as pd |
|
|
|
|
|
def test_v01(): |
|
|
|
default_value = "See how a modern neural network auto-completes your text π€ This site, built by the Hugging Face team, lets you write a whole document directly from your browser, and you can trigger the Transformer anywhere using the Tab key. Its like having a smart machine that completes your thoughts π Get started by typing a custom snippet, check out the repository, or try one of the examples. Have fun!" |
|
|
|
sent = st.text_area("Text", default_value, height = 275) |
|
max_length = st.sidebar.slider("Max Length", min_value = 10, max_value=30) |
|
temperature = st.sidebar.slider("Temperature", value = 1.0, min_value = 0.0, max_value=1.0, step=0.05) |
|
top_k = st.sidebar.slider("Top-k", min_value = 0, max_value=5, value = 0) |
|
top_p = st.sidebar.slider("Top-p", min_value = 0.0, max_value=1.0, step = 0.05, value = 0.9) |
|
num_return_sequences = st.sidebar.number_input('Number of Return Sequences', min_value=1, max_value=5, value=1, step=1) |
|
return num_return_sequences |
|
|
|
def test_v02(): |
|
dataset = load_dataset("merve/poetry", streaming=True) |
|
print(dataset) |
|
df = pd.DataFrame.from_dict(dataset["train"]) |
|
st.write("Most appearing words including stopwords") |
|
|
|
|
|
|
|
|
|
|
|
return st |
|
|
|
test_v02() |