chahah commited on
Commit
7ca03db
·
verified ·
1 Parent(s): 3c25581

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -19
app.py CHANGED
@@ -17,27 +17,28 @@ import bs4
17
  from langchain_core.rate_limiters import InMemoryRateLimiter
18
  from urllib.parse import urljoin
19
 
20
- rate_limiter = InMemoryRateLimiter(
21
- requests_per_second=0.1, # <-- MistralAI free. We can only make a request once every second
22
- check_every_n_seconds=0.01, # Wake up every 100 ms to check whether allowed to make a request,
23
- max_bucket_size=10, # Controls the maximum burst size.
24
- )
25
-
26
- retriever = ArxivRetriever(
27
- load_max_docs=2,
28
- get_ful_documents=True,
29
- )
30
-
31
- # LLM model
32
- llm = ChatMistralAI(model="mistral-large-latest", rate_limiter=rate_limiter)
33
-
34
- # Embeddings
35
- embed_model = "sentence-transformers/multi-qa-distilbert-cos-v1"
36
- # embed_model = "nvidia/NV-Embed-v2"
37
- embeddings = HuggingFaceInstructEmbeddings(model_name=embed_model)
38
- # embeddings = MistralAIEmbeddings()
39
 
40
  def initialize(arxivcode):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  docs = retriever.invoke(str(arxivcode))
42
  for i in range(len(docs)):
43
  docs[i].metadata['Published'] = str(docs[i].metadata['Published'])
 
17
  from langchain_core.rate_limiters import InMemoryRateLimiter
18
  from urllib.parse import urljoin
19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  def initialize(arxivcode):
22
+ rate_limiter = InMemoryRateLimiter(
23
+ requests_per_second=0.1, # <-- MistralAI free. We can only make a request once every second
24
+ check_every_n_seconds=0.01, # Wake up every 100 ms to check whether allowed to make a request,
25
+ max_bucket_size=10, # Controls the maximum burst size.
26
+ )
27
+
28
+ retriever = ArxivRetriever(
29
+ load_max_docs=2,
30
+ get_ful_documents=True,
31
+ )
32
+
33
+ # LLM model
34
+ llm = ChatMistralAI(model="mistral-large-latest", rate_limiter=rate_limiter)
35
+
36
+ # Embeddings
37
+ embed_model = "sentence-transformers/multi-qa-distilbert-cos-v1"
38
+ # embed_model = "nvidia/NV-Embed-v2"
39
+ embeddings = HuggingFaceInstructEmbeddings(model_name=embed_model)
40
+ # embeddings = MistralAIEmbeddings()
41
+
42
  docs = retriever.invoke(str(arxivcode))
43
  for i in range(len(docs)):
44
  docs[i].metadata['Published'] = str(docs[i].metadata['Published'])