Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -17,27 +17,28 @@ import bs4
|
|
17 |
from langchain_core.rate_limiters import InMemoryRateLimiter
|
18 |
from urllib.parse import urljoin
|
19 |
|
20 |
-
rate_limiter = InMemoryRateLimiter(
|
21 |
-
requests_per_second=0.1, # <-- MistralAI free. We can only make a request once every second
|
22 |
-
check_every_n_seconds=0.01, # Wake up every 100 ms to check whether allowed to make a request,
|
23 |
-
max_bucket_size=10, # Controls the maximum burst size.
|
24 |
-
)
|
25 |
-
|
26 |
-
retriever = ArxivRetriever(
|
27 |
-
load_max_docs=2,
|
28 |
-
get_ful_documents=True,
|
29 |
-
)
|
30 |
-
|
31 |
-
# LLM model
|
32 |
-
llm = ChatMistralAI(model="mistral-large-latest", rate_limiter=rate_limiter)
|
33 |
-
|
34 |
-
# Embeddings
|
35 |
-
embed_model = "sentence-transformers/multi-qa-distilbert-cos-v1"
|
36 |
-
# embed_model = "nvidia/NV-Embed-v2"
|
37 |
-
embeddings = HuggingFaceInstructEmbeddings(model_name=embed_model)
|
38 |
-
# embeddings = MistralAIEmbeddings()
|
39 |
|
40 |
def initialize(arxivcode):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
docs = retriever.invoke(str(arxivcode))
|
42 |
for i in range(len(docs)):
|
43 |
docs[i].metadata['Published'] = str(docs[i].metadata['Published'])
|
|
|
17 |
from langchain_core.rate_limiters import InMemoryRateLimiter
|
18 |
from urllib.parse import urljoin
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
def initialize(arxivcode):
|
22 |
+
rate_limiter = InMemoryRateLimiter(
|
23 |
+
requests_per_second=0.1, # <-- MistralAI free. We can only make a request once every second
|
24 |
+
check_every_n_seconds=0.01, # Wake up every 100 ms to check whether allowed to make a request,
|
25 |
+
max_bucket_size=10, # Controls the maximum burst size.
|
26 |
+
)
|
27 |
+
|
28 |
+
retriever = ArxivRetriever(
|
29 |
+
load_max_docs=2,
|
30 |
+
get_ful_documents=True,
|
31 |
+
)
|
32 |
+
|
33 |
+
# LLM model
|
34 |
+
llm = ChatMistralAI(model="mistral-large-latest", rate_limiter=rate_limiter)
|
35 |
+
|
36 |
+
# Embeddings
|
37 |
+
embed_model = "sentence-transformers/multi-qa-distilbert-cos-v1"
|
38 |
+
# embed_model = "nvidia/NV-Embed-v2"
|
39 |
+
embeddings = HuggingFaceInstructEmbeddings(model_name=embed_model)
|
40 |
+
# embeddings = MistralAIEmbeddings()
|
41 |
+
|
42 |
docs = retriever.invoke(str(arxivcode))
|
43 |
for i in range(len(docs)):
|
44 |
docs[i].metadata['Published'] = str(docs[i].metadata['Published'])
|