Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import AutoTokenizer, RobertaForSequenceClassification | |
import numpy as np | |
import torch | |
# assignment 2 | |
st.title("CS482 Project Sentiment Analysis") | |
text = st.text_area(label="Text to be analyzed", value="This sentiment analysis app is great!") | |
selected_model = st.radio(label="Model", options=["Model 1", "Model 2"]) | |
analyze_button = st.button(label="Analyze") | |
st.markdown("**:red[Sentiment:]**") | |
with st.spinner(text="Analyzing..."): | |
if analyze_button: | |
if selected_model=="Model 1": | |
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-emotion") | |
model = RobertaForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion") | |
else: | |
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest") | |
model = RobertaForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest") | |
inputs = tokenizer(text, return_tensors="pt") | |
with torch.no_grad(): | |
logits = model(**inputs).logits | |
prediction_id = logits.argmax().item() | |
results = model.config.id2label[prediction_id] | |
st.write(results) |