Spaces:
Runtime error
Runtime error
Ceyda Cinarel
commited on
Commit
β’
c8f27cf
1
Parent(s):
9a639cc
cached demo
Browse files- .gitattributes +1 -0
- README.md +5 -4
- data_analysis_app.py +73 -0
- data_utils.py +48 -0
- indexes/beit-base-patch16-224.faiss +3 -0
- indexes/beit-base-patch16-224.npy +3 -0
- indexes/deit-tiny-patch16-224.faiss +3 -0
- indexes/deit-tiny-patch16-224.npy +3 -0
- indexes/dino-vits8.faiss +3 -0
- indexes/dino-vits8.npy +3 -0
- indexes/levit-128S.faiss +3 -0
- indexes/levit-128S.npy +3 -0
- requirements.txt +6 -0
.gitattributes
CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.faiss filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
---
|
2 |
title: Fashion Classification
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.10.0
|
8 |
-
app_file:
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
title: Fashion Classification
|
3 |
+
emoji: π
|
4 |
+
colorFrom: gray
|
5 |
+
colorTo: pink
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.10.0
|
8 |
+
app_file: data_analysis_app.py
|
9 |
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
data_analysis_app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
import streamlit as st
|
3 |
+
|
4 |
+
from data_utils import get_embedding
|
5 |
+
|
6 |
+
from bokeh.plotting import figure,show
|
7 |
+
from bokeh.io import push_notebook, output_notebook
|
8 |
+
# output_notebook()
|
9 |
+
from bokeh.palettes import d3
|
10 |
+
|
11 |
+
from bokeh.models import ColumnDataSource, Grid, LinearAxis, Plot, Scatter
|
12 |
+
from bokeh.transform import factor_cmap, factor_mark
|
13 |
+
import base64
|
14 |
+
from io import BytesIO
|
15 |
+
|
16 |
+
label_columns=["gender","subCategory","masterCategory"]
|
17 |
+
|
18 |
+
model_interest=['facebook/deit-tiny-patch16-224', # very small model 5M param model
|
19 |
+
'microsoft/beit-base-patch16-224', # big model
|
20 |
+
"facebook/dino-vits8",
|
21 |
+
"facebook/levit-128S"]
|
22 |
+
|
23 |
+
def convert_base64(img):
|
24 |
+
buffered = BytesIO()
|
25 |
+
img.save(buffered, format="JPEG")
|
26 |
+
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
27 |
+
return "data:image/jpeg;base64,"+img_str
|
28 |
+
|
29 |
+
@st.experimental_singleton
|
30 |
+
def cache_embedding(model_name):
|
31 |
+
dataset=load_dataset("ceyda/fashion-products-small", split="train")
|
32 |
+
dataset=dataset.shuffle(seed=100) #pick a random seed
|
33 |
+
viz_dat=dataset.train_test_split(0.1,shuffle=False) #μΌλΆλ₯Ό visualizationμν΄μ λ½μλ¨
|
34 |
+
viz_dat=viz_dat["test"]
|
35 |
+
embedding = get_embedding(model_name,viz_dat)
|
36 |
+
embedding["image"]=embedding["image"].apply(convert_base64)
|
37 |
+
labels = {label:viz_dat.unique(label) for label in label_columns}
|
38 |
+
return embedding,labels
|
39 |
+
|
40 |
+
@st.experimental_singleton
|
41 |
+
def cache_graph(model_name,color_column):
|
42 |
+
embedding,labels=cache_embedding(model_name)
|
43 |
+
|
44 |
+
color_palette = (d3['Category20'][20]+d3['Category20b'][20]+d3['Category20c'][20])[:len(labels[color_column])]
|
45 |
+
source = ColumnDataSource(data=embedding)
|
46 |
+
# colors = factor_cmap('gender', palette=["purple","navy","green","blue","pink"], factors=embedding["gender"].unique())
|
47 |
+
|
48 |
+
|
49 |
+
TOOLS="hover,crosshair,pan,wheel_zoom,zoom_in,zoom_out,box_zoom,reset,tap,save,box_select,lasso_select,"
|
50 |
+
TOOLTIPS = """
|
51 |
+
<div>
|
52 |
+
<div>
|
53 |
+
<img
|
54 |
+
src="@image" height="42" alt="@image" width="42"
|
55 |
+
style="float: left; margin: 0px 15px 15px 0px;"
|
56 |
+
border="2"
|
57 |
+
></img>
|
58 |
+
</div>
|
59 |
+
"""
|
60 |
+
p = figure(tools=TOOLS,tooltips=TOOLTIPS)
|
61 |
+
|
62 |
+
p.scatter(x="x", y="y", source=source,
|
63 |
+
# marker=factor_mark('gender', ['circle', 'circle_cross', 'circle_dot','circle_x','circle_y'], labels["gender"]),
|
64 |
+
color=factor_cmap(color_column, color_palette, labels[color_column])
|
65 |
+
)
|
66 |
+
|
67 |
+
return p
|
68 |
+
|
69 |
+
|
70 |
+
model_name=st.sidebar.selectbox("Model",model_interest)
|
71 |
+
color_column=st.selectbox("Color by",label_columns)
|
72 |
+
p=cache_graph(model_name,color_column)
|
73 |
+
st.bokeh_chart(p, use_container_width=False)
|
data_utils.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
from PIL import Image
|
3 |
+
import os
|
4 |
+
import pandas as pd
|
5 |
+
from transformers import AutoFeatureExtractor,AutoModel
|
6 |
+
from faiss.contrib.inspect_tools import get_flat_data
|
7 |
+
import pymde
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
def get_embedding(model_name,viz_dat):
|
11 |
+
|
12 |
+
index_file=f"./indexes/{model_name.split('/')[1]}.faiss"
|
13 |
+
|
14 |
+
if os.path.exists(index_file):
|
15 |
+
viz_dat.load_faiss_index('embeddings', index_file)
|
16 |
+
else:
|
17 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
18 |
+
model = AutoModel.from_pretrained(model_name)
|
19 |
+
# model.to("cuda:0")
|
20 |
+
def embed(x):
|
21 |
+
images=x["image"]
|
22 |
+
inputs = feature_extractor(images=images, return_tensors="pt")
|
23 |
+
# inputs.to("cuda:0")
|
24 |
+
outputs = model(**inputs,output_hidden_states= True)
|
25 |
+
final_emb=outputs.pooler_output.detach().cpu().numpy() # this line depends on the model you are using
|
26 |
+
x["embeddings"]=final_emb
|
27 |
+
return x
|
28 |
+
# Add embeddings to dataset
|
29 |
+
viz_dat = viz_dat.map(embed,batched=True,batch_size=20)
|
30 |
+
viz_dat.add_faiss_index(column='embeddings')
|
31 |
+
viz_dat.save_faiss_index('embeddings',index_file)
|
32 |
+
|
33 |
+
embedding_file=f"./indexes/{model_name.split('/')[1]}.npy"
|
34 |
+
if os.path.exists(embedding_file):
|
35 |
+
embedding = np.load(embedding_file) # load
|
36 |
+
else:
|
37 |
+
index=viz_dat.get_index("embeddings").faiss_index
|
38 |
+
embeddings=get_flat_data(index)
|
39 |
+
embedding=pymde.preserve_neighbors(embeddings, verbose=True).embed().numpy()
|
40 |
+
np.save(embedding_file, embedding) # save
|
41 |
+
|
42 |
+
embedding=pd.DataFrame(embedding,columns=["x","y"])
|
43 |
+
embedding["image"]=viz_dat["image"]
|
44 |
+
embedding["gender"]=viz_dat["gender"]
|
45 |
+
embedding["masterCategory"]=viz_dat["masterCategory"]
|
46 |
+
embedding["subCategory"]=viz_dat["subCategory"]
|
47 |
+
|
48 |
+
return embedding
|
indexes/beit-base-patch16-224.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eef8b38b055d02f2dbfd6ac5c2cbba0cb670ef225285ba375e4baf63034ef589
|
3 |
+
size 13117485
|
indexes/beit-base-patch16-224.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b42f5b1e9a149b412a120a63999ea7a5d89438aef5651e200acbdcb226e75418
|
3 |
+
size 34288
|
indexes/deit-tiny-patch16-224.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5df0a6edbaf0b746bffc2ff740d783a4fa6be961dedece7ec069a37e1688341a
|
3 |
+
size 3279405
|
indexes/deit-tiny-patch16-224.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5bb0e5186ea3125d548838806af53cffc3fbb53ed752e06a7af9b2487c997df
|
3 |
+
size 34288
|
indexes/dino-vits8.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81965f420ca2c66ad55ad0e3300bbce2d5fd366b2c9e5e3ae48ecc88e4a00d97
|
3 |
+
size 6558765
|
indexes/dino-vits8.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1499f7501e455d088c5621512fd94a819fd26940271782cbf047db9e49359df0
|
3 |
+
size 34288
|
indexes/levit-128S.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1d9fec9e282812e613e312c036f8998b7177f6d19f787b61a5cd9810916ba8e
|
3 |
+
size 6558765
|
indexes/levit-128S.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8757326676da484d4aa542eacc54f74fb8c8c743697fde4d3dd0dd44e2eeb1f9
|
3 |
+
size 34288
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# didn't pin versions
|
2 |
+
datasets
|
3 |
+
transformers
|
4 |
+
pymde
|
5 |
+
bokeh==2.4.1
|
6 |
+
faiss-cpu
|