Chatbot / machine_learning.py
cellanet's picture
Create app.py
943a06b
raw
history blame
5.25 kB
from statistics import mode
import spacy
import re
import numpy
import tflearn
import tensorflow
def convert_txt_to_DataFrame(textFile):
with open(textFile) as f:
lines = f.readlines()
# remove all '\n' characters in all lines
lines = list(map(lambda x: x.strip('\n'), lines))
temp_dict = {}
for x in lines:
if '- -' in x:
# add new key to dict
temp_dict[x.strip('- -')] = []
for i, x in enumerate(lines):
if '- -' in x:
# '- -' = the question
# ' -' = the answers, there could be multiple answers for 1 question
# add the values(answers) to the question(key) of the dictionaries
temp_dict[x.strip('- -')].append(lines[i+1].strip(' -'))
return temp_dict
npl = spacy.load('en_core_web_md')
def convert_to_list(file):
data = convert_txt_to_DataFrame(file)
question = []
temp_bag = []
ans = []
for x in data:
ans.append(data[x])
x = re.sub(r'[^\w\s]', '', x)
temp_bag.append(x)
for x in temp_bag:
x1 = npl(x)
temp = []
for z in x1:
temp.append(z.lemma_)
question.append(temp)
return question,ans
def addQuestion(file, name):
temp_ques = {}
temp_ans = {}
ques, ans = convert_to_list(file)
temp_ques[name] = ques
temp_ans[name] = ans
return (ml_data.update(temp_ques), ans_data.update(temp_ans))
ml_data = {}
ans_data = {}
addQuestion('/opt/homebrew/anaconda3/envs/tensorflow/Chatbot/question files/hello.txt', 'hello')
addQuestion('/opt/homebrew/anaconda3/envs/tensorflow/Chatbot/question files/how are you.txt', 'how are you')
addQuestion('/opt/homebrew/anaconda3/envs/tensorflow/Chatbot/question files/interest.txt', 'interest')
addQuestion('/opt/homebrew/anaconda3/envs/tensorflow/Chatbot/question files/who are you.txt', 'who are you')
addQuestion('/opt/homebrew/anaconda3/envs/tensorflow/Chatbot/question files/you a robot.txt', 'you a robot')
addQuestion('/opt/homebrew/anaconda3/envs/tensorflow/Chatbot/question files/tell me about yourself.txt','tell me about yourself')
addQuestion('/opt/homebrew/anaconda3/envs/tensorflow/Chatbot/question files/what language python.txt','what language python')
addQuestion('/opt/homebrew/anaconda3/envs/tensorflow/Chatbot/question files/What is AI.txt', 'what is ai')
addQuestion('/opt/homebrew/anaconda3/envs/tensorflow/Chatbot/question files/Tell me a joke.txt','tell me a joke')
addQuestion('/opt/homebrew/anaconda3/envs/tensorflow/Chatbot/question files/you are stupid.txt', 'you are stupid')
addQuestion('/opt/homebrew/anaconda3/envs/tensorflow/Chatbot/question files/Pollak Library.txt','pollak library')
addQuestion('/opt/homebrew/anaconda3/envs/tensorflow/Chatbot/question files/Where is the building.txt','where is the building')
addQuestion('/opt/homebrew/anaconda3/envs/tensorflow/Chatbot/question files/hungry.txt','hungry')
addQuestion('/opt/homebrew/anaconda3/envs/tensorflow/Chatbot/question files/What is your major.txt','what is your major')
addQuestion('/opt/homebrew/anaconda3/envs/tensorflow/Chatbot/question files/free time.txt', 'free time')
addQuestion('/opt/homebrew/anaconda3/envs/tensorflow/Chatbot/question files/I need help.txt', 'i need help')
addQuestion('/opt/homebrew/anaconda3/envs/tensorflow/Chatbot/question files/your food.txt', 'your food')
addQuestion('/opt/homebrew/anaconda3/envs/tensorflow/Chatbot/question files/what time.txt', 'what time')
addQuestion('/opt/homebrew/anaconda3/envs/tensorflow/Chatbot/question files/weather.txt', 'weather')
addQuestion('/opt/homebrew/anaconda3/envs/tensorflow/Chatbot/question files/your job.txt', 'your job')
addQuestion('/opt/homebrew/anaconda3/envs/tensorflow/Chatbot/question files/old.txt', 'age')
labels = []
for x in ml_data:
labels.append(x)
labels = sorted(labels)
# labels
words = []
for x in ml_data:
for z in ml_data[x]:
words.extend(z)
words = sorted(list(set(words)))
#source: https://www.techwithtim.net/tutorials/ai-chatbot/part-2/
out_empty = [0 for _ in range(len(labels))]
training = []
output = []
for x, ques in enumerate(ml_data):
print(f"question: {ques}\n\n")
bag = []
wrds = []
for w in ml_data[ques]:
wrds.extend(w)
for w in words:
if w in wrds:
bag.append(1)
print(f"{w} = 1")
else:
bag.append(0)
# print(f"words: {w} = 0")
output_row = out_empty[:]
output_row[labels.index(ques)] = 1
print('\n', output_row)
training.append(bag)
output.append(output_row)
print(labels)
print("\n\n****\n\n")
training = numpy.array(training)
output = numpy.array(output)
tensorflow.compat.v1.reset_default_graph()
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
model = tflearn.DNN(net)
try:
model.load('minh103')
except:
model = tflearn.DNN(net)
model.fit(training, output, n_epoch=20000, batch_size=10, show_metric=True)
model.save('minh103')