Spaces:
Runtime error
Runtime error
shin-mashita
commited on
Commit
·
c3e1025
1
Parent(s):
2fe95f1
added prereq
Browse files- pytorch_i3d.py +354 -0
- videotransforms.py +102 -0
pytorch_i3d.py
ADDED
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.autograd import Variable
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
import os
|
9 |
+
import sys
|
10 |
+
from collections import OrderedDict
|
11 |
+
|
12 |
+
|
13 |
+
class MaxPool3dSamePadding(nn.MaxPool3d):
|
14 |
+
|
15 |
+
def compute_pad(self, dim, s):
|
16 |
+
if s % self.stride[dim] == 0:
|
17 |
+
return max(self.kernel_size[dim] - self.stride[dim], 0)
|
18 |
+
else:
|
19 |
+
return max(self.kernel_size[dim] - (s % self.stride[dim]), 0)
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
# compute 'same' padding
|
23 |
+
(batch, channel, t, h, w) = x.size()
|
24 |
+
#print t,h,w
|
25 |
+
out_t = np.ceil(float(t) / float(self.stride[0]))
|
26 |
+
out_h = np.ceil(float(h) / float(self.stride[1]))
|
27 |
+
out_w = np.ceil(float(w) / float(self.stride[2]))
|
28 |
+
#print out_t, out_h, out_w
|
29 |
+
pad_t = self.compute_pad(0, t)
|
30 |
+
pad_h = self.compute_pad(1, h)
|
31 |
+
pad_w = self.compute_pad(2, w)
|
32 |
+
#print pad_t, pad_h, pad_w
|
33 |
+
|
34 |
+
pad_t_f = pad_t // 2
|
35 |
+
pad_t_b = pad_t - pad_t_f
|
36 |
+
pad_h_f = pad_h // 2
|
37 |
+
pad_h_b = pad_h - pad_h_f
|
38 |
+
pad_w_f = pad_w // 2
|
39 |
+
pad_w_b = pad_w - pad_w_f
|
40 |
+
|
41 |
+
pad = (pad_w_f, pad_w_b, pad_h_f, pad_h_b, pad_t_f, pad_t_b)
|
42 |
+
#print x.size()
|
43 |
+
#print pad
|
44 |
+
x = F.pad(x, pad)
|
45 |
+
return super(MaxPool3dSamePadding, self).forward(x)
|
46 |
+
|
47 |
+
|
48 |
+
class Unit3D(nn.Module):
|
49 |
+
|
50 |
+
def __init__(self, in_channels,
|
51 |
+
output_channels,
|
52 |
+
kernel_shape=(1, 1, 1),
|
53 |
+
stride=(1, 1, 1),
|
54 |
+
padding=0,
|
55 |
+
activation_fn=F.relu,
|
56 |
+
use_batch_norm=True,
|
57 |
+
use_bias=False,
|
58 |
+
name='unit_3d'):
|
59 |
+
|
60 |
+
"""Initializes Unit3D module."""
|
61 |
+
super(Unit3D, self).__init__()
|
62 |
+
|
63 |
+
self._output_channels = output_channels
|
64 |
+
self._kernel_shape = kernel_shape
|
65 |
+
self._stride = stride
|
66 |
+
self._use_batch_norm = use_batch_norm
|
67 |
+
self._activation_fn = activation_fn
|
68 |
+
self._use_bias = use_bias
|
69 |
+
self.name = name
|
70 |
+
self.padding = padding
|
71 |
+
|
72 |
+
self.conv3d = nn.Conv3d(in_channels=in_channels,
|
73 |
+
out_channels=self._output_channels,
|
74 |
+
kernel_size=self._kernel_shape,
|
75 |
+
stride=self._stride,
|
76 |
+
padding=0, # we always want padding to be 0 here. We will dynamically pad based on input size in forward function
|
77 |
+
bias=self._use_bias)
|
78 |
+
|
79 |
+
if self._use_batch_norm:
|
80 |
+
self.bn = nn.BatchNorm3d(self._output_channels, eps=0.001, momentum=0.01)
|
81 |
+
|
82 |
+
def compute_pad(self, dim, s):
|
83 |
+
if s % self._stride[dim] == 0:
|
84 |
+
return max(self._kernel_shape[dim] - self._stride[dim], 0)
|
85 |
+
else:
|
86 |
+
return max(self._kernel_shape[dim] - (s % self._stride[dim]), 0)
|
87 |
+
|
88 |
+
|
89 |
+
def forward(self, x):
|
90 |
+
# compute 'same' padding
|
91 |
+
(batch, channel, t, h, w) = x.size()
|
92 |
+
#print t,h,w
|
93 |
+
out_t = np.ceil(float(t) / float(self._stride[0]))
|
94 |
+
out_h = np.ceil(float(h) / float(self._stride[1]))
|
95 |
+
out_w = np.ceil(float(w) / float(self._stride[2]))
|
96 |
+
#print out_t, out_h, out_w
|
97 |
+
pad_t = self.compute_pad(0, t)
|
98 |
+
pad_h = self.compute_pad(1, h)
|
99 |
+
pad_w = self.compute_pad(2, w)
|
100 |
+
#print pad_t, pad_h, pad_w
|
101 |
+
|
102 |
+
pad_t_f = pad_t // 2
|
103 |
+
pad_t_b = pad_t - pad_t_f
|
104 |
+
pad_h_f = pad_h // 2
|
105 |
+
pad_h_b = pad_h - pad_h_f
|
106 |
+
pad_w_f = pad_w // 2
|
107 |
+
pad_w_b = pad_w - pad_w_f
|
108 |
+
|
109 |
+
pad = (pad_w_f, pad_w_b, pad_h_f, pad_h_b, pad_t_f, pad_t_b)
|
110 |
+
#print x.size()
|
111 |
+
#print pad
|
112 |
+
x = F.pad(x, pad)
|
113 |
+
#print x.size()
|
114 |
+
|
115 |
+
x = self.conv3d(x)
|
116 |
+
if self._use_batch_norm:
|
117 |
+
x = self.bn(x)
|
118 |
+
if self._activation_fn is not None:
|
119 |
+
x = self._activation_fn(x)
|
120 |
+
return x
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
class InceptionModule(nn.Module):
|
125 |
+
def __init__(self, in_channels, out_channels, name):
|
126 |
+
super(InceptionModule, self).__init__()
|
127 |
+
|
128 |
+
self.b0 = Unit3D(in_channels=in_channels, output_channels=out_channels[0], kernel_shape=[1, 1, 1], padding=0,
|
129 |
+
name=name+'/Branch_0/Conv3d_0a_1x1')
|
130 |
+
self.b1a = Unit3D(in_channels=in_channels, output_channels=out_channels[1], kernel_shape=[1, 1, 1], padding=0,
|
131 |
+
name=name+'/Branch_1/Conv3d_0a_1x1')
|
132 |
+
self.b1b = Unit3D(in_channels=out_channels[1], output_channels=out_channels[2], kernel_shape=[3, 3, 3],
|
133 |
+
name=name+'/Branch_1/Conv3d_0b_3x3')
|
134 |
+
self.b2a = Unit3D(in_channels=in_channels, output_channels=out_channels[3], kernel_shape=[1, 1, 1], padding=0,
|
135 |
+
name=name+'/Branch_2/Conv3d_0a_1x1')
|
136 |
+
self.b2b = Unit3D(in_channels=out_channels[3], output_channels=out_channels[4], kernel_shape=[3, 3, 3],
|
137 |
+
name=name+'/Branch_2/Conv3d_0b_3x3')
|
138 |
+
self.b3a = MaxPool3dSamePadding(kernel_size=[3, 3, 3],
|
139 |
+
stride=(1, 1, 1), padding=0)
|
140 |
+
self.b3b = Unit3D(in_channels=in_channels, output_channels=out_channels[5], kernel_shape=[1, 1, 1], padding=0,
|
141 |
+
name=name+'/Branch_3/Conv3d_0b_1x1')
|
142 |
+
self.name = name
|
143 |
+
|
144 |
+
def forward(self, x):
|
145 |
+
b0 = self.b0(x)
|
146 |
+
b1 = self.b1b(self.b1a(x))
|
147 |
+
b2 = self.b2b(self.b2a(x))
|
148 |
+
b3 = self.b3b(self.b3a(x))
|
149 |
+
return torch.cat([b0,b1,b2,b3], dim=1)
|
150 |
+
|
151 |
+
|
152 |
+
class InceptionI3d(nn.Module):
|
153 |
+
"""Inception-v1 I3D architecture.
|
154 |
+
The model is introduced in:
|
155 |
+
Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
|
156 |
+
Joao Carreira, Andrew Zisserman
|
157 |
+
https://arxiv.org/pdf/1705.07750v1.pdf.
|
158 |
+
See also the Inception architecture, introduced in:
|
159 |
+
Going deeper with convolutions
|
160 |
+
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
|
161 |
+
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich.
|
162 |
+
http://arxiv.org/pdf/1409.4842v1.pdf.
|
163 |
+
"""
|
164 |
+
|
165 |
+
# Endpoints of the model in order. During construction, all the endpoints up
|
166 |
+
# to a designated `final_endpoint` are returned in a dictionary as the
|
167 |
+
# second return value.
|
168 |
+
VALID_ENDPOINTS = (
|
169 |
+
'Conv3d_1a_7x7',
|
170 |
+
'MaxPool3d_2a_3x3',
|
171 |
+
'Conv3d_2b_1x1',
|
172 |
+
'Conv3d_2c_3x3',
|
173 |
+
'MaxPool3d_3a_3x3',
|
174 |
+
'Mixed_3b',
|
175 |
+
'Mixed_3c',
|
176 |
+
'MaxPool3d_4a_3x3',
|
177 |
+
'Mixed_4b',
|
178 |
+
'Mixed_4c',
|
179 |
+
'Mixed_4d',
|
180 |
+
'Mixed_4e',
|
181 |
+
'Mixed_4f',
|
182 |
+
'MaxPool3d_5a_2x2',
|
183 |
+
'Mixed_5b',
|
184 |
+
'Mixed_5c',
|
185 |
+
'Logits',
|
186 |
+
'Predictions',
|
187 |
+
)
|
188 |
+
|
189 |
+
def __init__(self, num_classes=400, spatial_squeeze=True,
|
190 |
+
final_endpoint='Logits', name='inception_i3d', in_channels=3, dropout_keep_prob=0.5):
|
191 |
+
"""Initializes I3D model instance.
|
192 |
+
Args:
|
193 |
+
num_classes: The number of outputs in the logit layer (default 400, which
|
194 |
+
matches the Kinetics dataset).
|
195 |
+
spatial_squeeze: Whether to squeeze the spatial dimensions for the logits
|
196 |
+
before returning (default True).
|
197 |
+
final_endpoint: The model contains many possible endpoints.
|
198 |
+
`final_endpoint` specifies the last endpoint for the model to be built
|
199 |
+
up to. In addition to the output at `final_endpoint`, all the outputs
|
200 |
+
at endpoints up to `final_endpoint` will also be returned, in a
|
201 |
+
dictionary. `final_endpoint` must be one of
|
202 |
+
InceptionI3d.VALID_ENDPOINTS (default 'Logits').
|
203 |
+
name: A string (optional). The name of this module.
|
204 |
+
Raises:
|
205 |
+
ValueError: if `final_endpoint` is not recognized.
|
206 |
+
"""
|
207 |
+
|
208 |
+
if final_endpoint not in self.VALID_ENDPOINTS:
|
209 |
+
raise ValueError('Unknown final endpoint %s' % final_endpoint)
|
210 |
+
|
211 |
+
super(InceptionI3d, self).__init__()
|
212 |
+
self._num_classes = num_classes
|
213 |
+
self._spatial_squeeze = spatial_squeeze
|
214 |
+
self._final_endpoint = final_endpoint
|
215 |
+
self.logits = None
|
216 |
+
|
217 |
+
if self._final_endpoint not in self.VALID_ENDPOINTS:
|
218 |
+
raise ValueError('Unknown final endpoint %s' % self._final_endpoint)
|
219 |
+
|
220 |
+
self.end_points = {}
|
221 |
+
end_point = 'Conv3d_1a_7x7'
|
222 |
+
self.end_points[end_point] = Unit3D(in_channels=in_channels, output_channels=64, kernel_shape=[7, 7, 7],
|
223 |
+
stride=(2, 2, 2), padding=(3,3,3), name=name+end_point)
|
224 |
+
if self._final_endpoint == end_point: return
|
225 |
+
|
226 |
+
end_point = 'MaxPool3d_2a_3x3'
|
227 |
+
self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[1, 3, 3], stride=(1, 2, 2),
|
228 |
+
padding=0)
|
229 |
+
if self._final_endpoint == end_point: return
|
230 |
+
|
231 |
+
end_point = 'Conv3d_2b_1x1'
|
232 |
+
self.end_points[end_point] = Unit3D(in_channels=64, output_channels=64, kernel_shape=[1, 1, 1], padding=0,
|
233 |
+
name=name+end_point)
|
234 |
+
if self._final_endpoint == end_point: return
|
235 |
+
|
236 |
+
end_point = 'Conv3d_2c_3x3'
|
237 |
+
self.end_points[end_point] = Unit3D(in_channels=64, output_channels=192, kernel_shape=[3, 3, 3], padding=1,
|
238 |
+
name=name+end_point)
|
239 |
+
if self._final_endpoint == end_point: return
|
240 |
+
|
241 |
+
end_point = 'MaxPool3d_3a_3x3'
|
242 |
+
self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[1, 3, 3], stride=(1, 2, 2),
|
243 |
+
padding=0)
|
244 |
+
if self._final_endpoint == end_point: return
|
245 |
+
|
246 |
+
end_point = 'Mixed_3b'
|
247 |
+
self.end_points[end_point] = InceptionModule(192, [64,96,128,16,32,32], name+end_point)
|
248 |
+
if self._final_endpoint == end_point: return
|
249 |
+
|
250 |
+
end_point = 'Mixed_3c'
|
251 |
+
self.end_points[end_point] = InceptionModule(256, [128,128,192,32,96,64], name+end_point)
|
252 |
+
if self._final_endpoint == end_point: return
|
253 |
+
|
254 |
+
end_point = 'MaxPool3d_4a_3x3'
|
255 |
+
self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[3, 3, 3], stride=(2, 2, 2),
|
256 |
+
padding=0)
|
257 |
+
if self._final_endpoint == end_point: return
|
258 |
+
|
259 |
+
end_point = 'Mixed_4b'
|
260 |
+
self.end_points[end_point] = InceptionModule(128+192+96+64, [192,96,208,16,48,64], name+end_point)
|
261 |
+
if self._final_endpoint == end_point: return
|
262 |
+
|
263 |
+
end_point = 'Mixed_4c'
|
264 |
+
self.end_points[end_point] = InceptionModule(192+208+48+64, [160,112,224,24,64,64], name+end_point)
|
265 |
+
if self._final_endpoint == end_point: return
|
266 |
+
|
267 |
+
end_point = 'Mixed_4d'
|
268 |
+
self.end_points[end_point] = InceptionModule(160+224+64+64, [128,128,256,24,64,64], name+end_point)
|
269 |
+
if self._final_endpoint == end_point: return
|
270 |
+
|
271 |
+
end_point = 'Mixed_4e'
|
272 |
+
self.end_points[end_point] = InceptionModule(128+256+64+64, [112,144,288,32,64,64], name+end_point)
|
273 |
+
if self._final_endpoint == end_point: return
|
274 |
+
|
275 |
+
end_point = 'Mixed_4f'
|
276 |
+
self.end_points[end_point] = InceptionModule(112+288+64+64, [256,160,320,32,128,128], name+end_point)
|
277 |
+
if self._final_endpoint == end_point: return
|
278 |
+
|
279 |
+
end_point = 'MaxPool3d_5a_2x2'
|
280 |
+
self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[2, 2, 2], stride=(2, 2, 2),
|
281 |
+
padding=0)
|
282 |
+
if self._final_endpoint == end_point: return
|
283 |
+
|
284 |
+
end_point = 'Mixed_5b'
|
285 |
+
self.end_points[end_point] = InceptionModule(256+320+128+128, [256,160,320,32,128,128], name+end_point)
|
286 |
+
if self._final_endpoint == end_point: return
|
287 |
+
|
288 |
+
end_point = 'Mixed_5c'
|
289 |
+
self.end_points[end_point] = InceptionModule(256+320+128+128, [384,192,384,48,128,128], name+end_point)
|
290 |
+
if self._final_endpoint == end_point: return
|
291 |
+
|
292 |
+
end_point = 'Logits'
|
293 |
+
self.avg_pool = nn.AvgPool3d(kernel_size=[2, 7, 7],
|
294 |
+
stride=(1, 1, 1))
|
295 |
+
self.dropout = nn.Dropout(dropout_keep_prob)
|
296 |
+
self.logits = Unit3D(in_channels=384+384+128+128, output_channels=self._num_classes,
|
297 |
+
kernel_shape=[1, 1, 1],
|
298 |
+
padding=0,
|
299 |
+
activation_fn=None,
|
300 |
+
use_batch_norm=False,
|
301 |
+
use_bias=True,
|
302 |
+
name='logits')
|
303 |
+
|
304 |
+
self.build()
|
305 |
+
|
306 |
+
|
307 |
+
def replace_logits(self, num_classes):
|
308 |
+
self._num_classes = num_classes
|
309 |
+
self.logits = Unit3D(in_channels=384+384+128+128, output_channels=self._num_classes,
|
310 |
+
kernel_shape=[1, 1, 1],
|
311 |
+
padding=0,
|
312 |
+
activation_fn=None,
|
313 |
+
use_batch_norm=False,
|
314 |
+
use_bias=True,
|
315 |
+
name='logits')
|
316 |
+
|
317 |
+
def build(self):
|
318 |
+
for k in self.end_points.keys():
|
319 |
+
self.add_module(k, self.end_points[k])
|
320 |
+
|
321 |
+
def forward(self, x, pretrained=False, n_tune_layers=-1):
|
322 |
+
if pretrained:
|
323 |
+
assert n_tune_layers >= 0
|
324 |
+
|
325 |
+
freeze_endpoints = self.VALID_ENDPOINTS[:-n_tune_layers]
|
326 |
+
tune_endpoints = self.VALID_ENDPOINTS[-n_tune_layers:]
|
327 |
+
else:
|
328 |
+
freeze_endpoints = []
|
329 |
+
tune_endpoints = self.VALID_ENDPOINTS
|
330 |
+
|
331 |
+
# backbone, no gradient part
|
332 |
+
with torch.no_grad():
|
333 |
+
for end_point in freeze_endpoints:
|
334 |
+
if end_point in self.end_points:
|
335 |
+
x = self._modules[end_point](x) # use _modules to work with dataparallel
|
336 |
+
|
337 |
+
# backbone, gradient part
|
338 |
+
for end_point in tune_endpoints:
|
339 |
+
if end_point in self.end_points:
|
340 |
+
x = self._modules[end_point](x) # use _modules to work with dataparallel
|
341 |
+
|
342 |
+
# head
|
343 |
+
x = self.logits(self.dropout(self.avg_pool(x)))
|
344 |
+
if self._spatial_squeeze:
|
345 |
+
logits = x.squeeze(3).squeeze(3)
|
346 |
+
# logits is batch X time X classes, which is what we want to work with
|
347 |
+
return logits
|
348 |
+
|
349 |
+
|
350 |
+
def extract_features(self, x):
|
351 |
+
for end_point in self.VALID_ENDPOINTS:
|
352 |
+
if end_point in self.end_points:
|
353 |
+
x = self._modules[end_point](x)
|
354 |
+
return self.avg_pool(x)
|
videotransforms.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import numbers
|
3 |
+
import random
|
4 |
+
|
5 |
+
class RandomCrop(object):
|
6 |
+
"""Crop the given video sequences (t x h x w) at a random location.
|
7 |
+
Args:
|
8 |
+
size (sequence or int): Desired output size of the crop. If size is an
|
9 |
+
int instead of sequence like (h, w), a square crop (size, size) is
|
10 |
+
made.
|
11 |
+
"""
|
12 |
+
|
13 |
+
def __init__(self, size):
|
14 |
+
if isinstance(size, numbers.Number):
|
15 |
+
self.size = (int(size), int(size))
|
16 |
+
else:
|
17 |
+
self.size = size
|
18 |
+
|
19 |
+
@staticmethod
|
20 |
+
def get_params(img, output_size):
|
21 |
+
"""Get parameters for ``crop`` for a random crop.
|
22 |
+
Args:
|
23 |
+
img (PIL Image): Image to be cropped.
|
24 |
+
output_size (tuple): Expected output size of the crop.
|
25 |
+
Returns:
|
26 |
+
tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
|
27 |
+
"""
|
28 |
+
t, h, w, c = img.shape
|
29 |
+
th, tw = output_size
|
30 |
+
if w == tw and h == th:
|
31 |
+
return 0, 0, h, w
|
32 |
+
|
33 |
+
i = random.randint(0, h - th) if h!=th else 0
|
34 |
+
j = random.randint(0, w - tw) if w!=tw else 0
|
35 |
+
return i, j, th, tw
|
36 |
+
|
37 |
+
def __call__(self, imgs):
|
38 |
+
|
39 |
+
i, j, h, w = self.get_params(imgs, self.size)
|
40 |
+
|
41 |
+
imgs = imgs[:, i:i+h, j:j+w, :]
|
42 |
+
return imgs
|
43 |
+
|
44 |
+
def __repr__(self):
|
45 |
+
return self.__class__.__name__ + '(size={0})'.format(self.size)
|
46 |
+
|
47 |
+
class CenterCrop(object):
|
48 |
+
"""Crops the given seq Images at the center.
|
49 |
+
Args:
|
50 |
+
size (sequence or int): Desired output size of the crop. If size is an
|
51 |
+
int instead of sequence like (h, w), a square crop (size, size) is
|
52 |
+
made.
|
53 |
+
"""
|
54 |
+
|
55 |
+
def __init__(self, size):
|
56 |
+
if isinstance(size, numbers.Number):
|
57 |
+
self.size = (int(size), int(size))
|
58 |
+
else:
|
59 |
+
self.size = size
|
60 |
+
|
61 |
+
def __call__(self, imgs):
|
62 |
+
"""
|
63 |
+
Args:
|
64 |
+
img (PIL Image): Image to be cropped.
|
65 |
+
Returns:
|
66 |
+
PIL Image: Cropped image.
|
67 |
+
"""
|
68 |
+
t, h, w, c = imgs.shape
|
69 |
+
th, tw = self.size
|
70 |
+
i = int(np.round((h - th) / 2.))
|
71 |
+
j = int(np.round((w - tw) / 2.))
|
72 |
+
|
73 |
+
return imgs[:, i:i+th, j:j+tw, :]
|
74 |
+
|
75 |
+
|
76 |
+
def __repr__(self):
|
77 |
+
return self.__class__.__name__ + '(size={0})'.format(self.size)
|
78 |
+
|
79 |
+
|
80 |
+
class RandomHorizontalFlip(object):
|
81 |
+
"""Horizontally flip the given seq Images randomly with a given probability.
|
82 |
+
Args:
|
83 |
+
p (float): probability of the image being flipped. Default value is 0.5
|
84 |
+
"""
|
85 |
+
|
86 |
+
def __init__(self, p=0.5):
|
87 |
+
self.p = p
|
88 |
+
|
89 |
+
def __call__(self, imgs):
|
90 |
+
"""
|
91 |
+
Args:
|
92 |
+
img (seq Images): seq Images to be flipped.
|
93 |
+
Returns:
|
94 |
+
seq Images: Randomly flipped seq images.
|
95 |
+
"""
|
96 |
+
if random.random() < self.p:
|
97 |
+
# t x h x w
|
98 |
+
return np.flip(imgs, axis=2).copy()
|
99 |
+
return imgs
|
100 |
+
|
101 |
+
def __repr__(self):
|
102 |
+
return self.__class__.__name__ + '(p={})'.format(self.p)
|