shin-mashita commited on
Commit
c3e1025
·
1 Parent(s): 2fe95f1

added prereq

Browse files
Files changed (2) hide show
  1. pytorch_i3d.py +354 -0
  2. videotransforms.py +102 -0
pytorch_i3d.py ADDED
@@ -0,0 +1,354 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from torch.autograd import Variable
5
+
6
+ import numpy as np
7
+
8
+ import os
9
+ import sys
10
+ from collections import OrderedDict
11
+
12
+
13
+ class MaxPool3dSamePadding(nn.MaxPool3d):
14
+
15
+ def compute_pad(self, dim, s):
16
+ if s % self.stride[dim] == 0:
17
+ return max(self.kernel_size[dim] - self.stride[dim], 0)
18
+ else:
19
+ return max(self.kernel_size[dim] - (s % self.stride[dim]), 0)
20
+
21
+ def forward(self, x):
22
+ # compute 'same' padding
23
+ (batch, channel, t, h, w) = x.size()
24
+ #print t,h,w
25
+ out_t = np.ceil(float(t) / float(self.stride[0]))
26
+ out_h = np.ceil(float(h) / float(self.stride[1]))
27
+ out_w = np.ceil(float(w) / float(self.stride[2]))
28
+ #print out_t, out_h, out_w
29
+ pad_t = self.compute_pad(0, t)
30
+ pad_h = self.compute_pad(1, h)
31
+ pad_w = self.compute_pad(2, w)
32
+ #print pad_t, pad_h, pad_w
33
+
34
+ pad_t_f = pad_t // 2
35
+ pad_t_b = pad_t - pad_t_f
36
+ pad_h_f = pad_h // 2
37
+ pad_h_b = pad_h - pad_h_f
38
+ pad_w_f = pad_w // 2
39
+ pad_w_b = pad_w - pad_w_f
40
+
41
+ pad = (pad_w_f, pad_w_b, pad_h_f, pad_h_b, pad_t_f, pad_t_b)
42
+ #print x.size()
43
+ #print pad
44
+ x = F.pad(x, pad)
45
+ return super(MaxPool3dSamePadding, self).forward(x)
46
+
47
+
48
+ class Unit3D(nn.Module):
49
+
50
+ def __init__(self, in_channels,
51
+ output_channels,
52
+ kernel_shape=(1, 1, 1),
53
+ stride=(1, 1, 1),
54
+ padding=0,
55
+ activation_fn=F.relu,
56
+ use_batch_norm=True,
57
+ use_bias=False,
58
+ name='unit_3d'):
59
+
60
+ """Initializes Unit3D module."""
61
+ super(Unit3D, self).__init__()
62
+
63
+ self._output_channels = output_channels
64
+ self._kernel_shape = kernel_shape
65
+ self._stride = stride
66
+ self._use_batch_norm = use_batch_norm
67
+ self._activation_fn = activation_fn
68
+ self._use_bias = use_bias
69
+ self.name = name
70
+ self.padding = padding
71
+
72
+ self.conv3d = nn.Conv3d(in_channels=in_channels,
73
+ out_channels=self._output_channels,
74
+ kernel_size=self._kernel_shape,
75
+ stride=self._stride,
76
+ padding=0, # we always want padding to be 0 here. We will dynamically pad based on input size in forward function
77
+ bias=self._use_bias)
78
+
79
+ if self._use_batch_norm:
80
+ self.bn = nn.BatchNorm3d(self._output_channels, eps=0.001, momentum=0.01)
81
+
82
+ def compute_pad(self, dim, s):
83
+ if s % self._stride[dim] == 0:
84
+ return max(self._kernel_shape[dim] - self._stride[dim], 0)
85
+ else:
86
+ return max(self._kernel_shape[dim] - (s % self._stride[dim]), 0)
87
+
88
+
89
+ def forward(self, x):
90
+ # compute 'same' padding
91
+ (batch, channel, t, h, w) = x.size()
92
+ #print t,h,w
93
+ out_t = np.ceil(float(t) / float(self._stride[0]))
94
+ out_h = np.ceil(float(h) / float(self._stride[1]))
95
+ out_w = np.ceil(float(w) / float(self._stride[2]))
96
+ #print out_t, out_h, out_w
97
+ pad_t = self.compute_pad(0, t)
98
+ pad_h = self.compute_pad(1, h)
99
+ pad_w = self.compute_pad(2, w)
100
+ #print pad_t, pad_h, pad_w
101
+
102
+ pad_t_f = pad_t // 2
103
+ pad_t_b = pad_t - pad_t_f
104
+ pad_h_f = pad_h // 2
105
+ pad_h_b = pad_h - pad_h_f
106
+ pad_w_f = pad_w // 2
107
+ pad_w_b = pad_w - pad_w_f
108
+
109
+ pad = (pad_w_f, pad_w_b, pad_h_f, pad_h_b, pad_t_f, pad_t_b)
110
+ #print x.size()
111
+ #print pad
112
+ x = F.pad(x, pad)
113
+ #print x.size()
114
+
115
+ x = self.conv3d(x)
116
+ if self._use_batch_norm:
117
+ x = self.bn(x)
118
+ if self._activation_fn is not None:
119
+ x = self._activation_fn(x)
120
+ return x
121
+
122
+
123
+
124
+ class InceptionModule(nn.Module):
125
+ def __init__(self, in_channels, out_channels, name):
126
+ super(InceptionModule, self).__init__()
127
+
128
+ self.b0 = Unit3D(in_channels=in_channels, output_channels=out_channels[0], kernel_shape=[1, 1, 1], padding=0,
129
+ name=name+'/Branch_0/Conv3d_0a_1x1')
130
+ self.b1a = Unit3D(in_channels=in_channels, output_channels=out_channels[1], kernel_shape=[1, 1, 1], padding=0,
131
+ name=name+'/Branch_1/Conv3d_0a_1x1')
132
+ self.b1b = Unit3D(in_channels=out_channels[1], output_channels=out_channels[2], kernel_shape=[3, 3, 3],
133
+ name=name+'/Branch_1/Conv3d_0b_3x3')
134
+ self.b2a = Unit3D(in_channels=in_channels, output_channels=out_channels[3], kernel_shape=[1, 1, 1], padding=0,
135
+ name=name+'/Branch_2/Conv3d_0a_1x1')
136
+ self.b2b = Unit3D(in_channels=out_channels[3], output_channels=out_channels[4], kernel_shape=[3, 3, 3],
137
+ name=name+'/Branch_2/Conv3d_0b_3x3')
138
+ self.b3a = MaxPool3dSamePadding(kernel_size=[3, 3, 3],
139
+ stride=(1, 1, 1), padding=0)
140
+ self.b3b = Unit3D(in_channels=in_channels, output_channels=out_channels[5], kernel_shape=[1, 1, 1], padding=0,
141
+ name=name+'/Branch_3/Conv3d_0b_1x1')
142
+ self.name = name
143
+
144
+ def forward(self, x):
145
+ b0 = self.b0(x)
146
+ b1 = self.b1b(self.b1a(x))
147
+ b2 = self.b2b(self.b2a(x))
148
+ b3 = self.b3b(self.b3a(x))
149
+ return torch.cat([b0,b1,b2,b3], dim=1)
150
+
151
+
152
+ class InceptionI3d(nn.Module):
153
+ """Inception-v1 I3D architecture.
154
+ The model is introduced in:
155
+ Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
156
+ Joao Carreira, Andrew Zisserman
157
+ https://arxiv.org/pdf/1705.07750v1.pdf.
158
+ See also the Inception architecture, introduced in:
159
+ Going deeper with convolutions
160
+ Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
161
+ Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich.
162
+ http://arxiv.org/pdf/1409.4842v1.pdf.
163
+ """
164
+
165
+ # Endpoints of the model in order. During construction, all the endpoints up
166
+ # to a designated `final_endpoint` are returned in a dictionary as the
167
+ # second return value.
168
+ VALID_ENDPOINTS = (
169
+ 'Conv3d_1a_7x7',
170
+ 'MaxPool3d_2a_3x3',
171
+ 'Conv3d_2b_1x1',
172
+ 'Conv3d_2c_3x3',
173
+ 'MaxPool3d_3a_3x3',
174
+ 'Mixed_3b',
175
+ 'Mixed_3c',
176
+ 'MaxPool3d_4a_3x3',
177
+ 'Mixed_4b',
178
+ 'Mixed_4c',
179
+ 'Mixed_4d',
180
+ 'Mixed_4e',
181
+ 'Mixed_4f',
182
+ 'MaxPool3d_5a_2x2',
183
+ 'Mixed_5b',
184
+ 'Mixed_5c',
185
+ 'Logits',
186
+ 'Predictions',
187
+ )
188
+
189
+ def __init__(self, num_classes=400, spatial_squeeze=True,
190
+ final_endpoint='Logits', name='inception_i3d', in_channels=3, dropout_keep_prob=0.5):
191
+ """Initializes I3D model instance.
192
+ Args:
193
+ num_classes: The number of outputs in the logit layer (default 400, which
194
+ matches the Kinetics dataset).
195
+ spatial_squeeze: Whether to squeeze the spatial dimensions for the logits
196
+ before returning (default True).
197
+ final_endpoint: The model contains many possible endpoints.
198
+ `final_endpoint` specifies the last endpoint for the model to be built
199
+ up to. In addition to the output at `final_endpoint`, all the outputs
200
+ at endpoints up to `final_endpoint` will also be returned, in a
201
+ dictionary. `final_endpoint` must be one of
202
+ InceptionI3d.VALID_ENDPOINTS (default 'Logits').
203
+ name: A string (optional). The name of this module.
204
+ Raises:
205
+ ValueError: if `final_endpoint` is not recognized.
206
+ """
207
+
208
+ if final_endpoint not in self.VALID_ENDPOINTS:
209
+ raise ValueError('Unknown final endpoint %s' % final_endpoint)
210
+
211
+ super(InceptionI3d, self).__init__()
212
+ self._num_classes = num_classes
213
+ self._spatial_squeeze = spatial_squeeze
214
+ self._final_endpoint = final_endpoint
215
+ self.logits = None
216
+
217
+ if self._final_endpoint not in self.VALID_ENDPOINTS:
218
+ raise ValueError('Unknown final endpoint %s' % self._final_endpoint)
219
+
220
+ self.end_points = {}
221
+ end_point = 'Conv3d_1a_7x7'
222
+ self.end_points[end_point] = Unit3D(in_channels=in_channels, output_channels=64, kernel_shape=[7, 7, 7],
223
+ stride=(2, 2, 2), padding=(3,3,3), name=name+end_point)
224
+ if self._final_endpoint == end_point: return
225
+
226
+ end_point = 'MaxPool3d_2a_3x3'
227
+ self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[1, 3, 3], stride=(1, 2, 2),
228
+ padding=0)
229
+ if self._final_endpoint == end_point: return
230
+
231
+ end_point = 'Conv3d_2b_1x1'
232
+ self.end_points[end_point] = Unit3D(in_channels=64, output_channels=64, kernel_shape=[1, 1, 1], padding=0,
233
+ name=name+end_point)
234
+ if self._final_endpoint == end_point: return
235
+
236
+ end_point = 'Conv3d_2c_3x3'
237
+ self.end_points[end_point] = Unit3D(in_channels=64, output_channels=192, kernel_shape=[3, 3, 3], padding=1,
238
+ name=name+end_point)
239
+ if self._final_endpoint == end_point: return
240
+
241
+ end_point = 'MaxPool3d_3a_3x3'
242
+ self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[1, 3, 3], stride=(1, 2, 2),
243
+ padding=0)
244
+ if self._final_endpoint == end_point: return
245
+
246
+ end_point = 'Mixed_3b'
247
+ self.end_points[end_point] = InceptionModule(192, [64,96,128,16,32,32], name+end_point)
248
+ if self._final_endpoint == end_point: return
249
+
250
+ end_point = 'Mixed_3c'
251
+ self.end_points[end_point] = InceptionModule(256, [128,128,192,32,96,64], name+end_point)
252
+ if self._final_endpoint == end_point: return
253
+
254
+ end_point = 'MaxPool3d_4a_3x3'
255
+ self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[3, 3, 3], stride=(2, 2, 2),
256
+ padding=0)
257
+ if self._final_endpoint == end_point: return
258
+
259
+ end_point = 'Mixed_4b'
260
+ self.end_points[end_point] = InceptionModule(128+192+96+64, [192,96,208,16,48,64], name+end_point)
261
+ if self._final_endpoint == end_point: return
262
+
263
+ end_point = 'Mixed_4c'
264
+ self.end_points[end_point] = InceptionModule(192+208+48+64, [160,112,224,24,64,64], name+end_point)
265
+ if self._final_endpoint == end_point: return
266
+
267
+ end_point = 'Mixed_4d'
268
+ self.end_points[end_point] = InceptionModule(160+224+64+64, [128,128,256,24,64,64], name+end_point)
269
+ if self._final_endpoint == end_point: return
270
+
271
+ end_point = 'Mixed_4e'
272
+ self.end_points[end_point] = InceptionModule(128+256+64+64, [112,144,288,32,64,64], name+end_point)
273
+ if self._final_endpoint == end_point: return
274
+
275
+ end_point = 'Mixed_4f'
276
+ self.end_points[end_point] = InceptionModule(112+288+64+64, [256,160,320,32,128,128], name+end_point)
277
+ if self._final_endpoint == end_point: return
278
+
279
+ end_point = 'MaxPool3d_5a_2x2'
280
+ self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[2, 2, 2], stride=(2, 2, 2),
281
+ padding=0)
282
+ if self._final_endpoint == end_point: return
283
+
284
+ end_point = 'Mixed_5b'
285
+ self.end_points[end_point] = InceptionModule(256+320+128+128, [256,160,320,32,128,128], name+end_point)
286
+ if self._final_endpoint == end_point: return
287
+
288
+ end_point = 'Mixed_5c'
289
+ self.end_points[end_point] = InceptionModule(256+320+128+128, [384,192,384,48,128,128], name+end_point)
290
+ if self._final_endpoint == end_point: return
291
+
292
+ end_point = 'Logits'
293
+ self.avg_pool = nn.AvgPool3d(kernel_size=[2, 7, 7],
294
+ stride=(1, 1, 1))
295
+ self.dropout = nn.Dropout(dropout_keep_prob)
296
+ self.logits = Unit3D(in_channels=384+384+128+128, output_channels=self._num_classes,
297
+ kernel_shape=[1, 1, 1],
298
+ padding=0,
299
+ activation_fn=None,
300
+ use_batch_norm=False,
301
+ use_bias=True,
302
+ name='logits')
303
+
304
+ self.build()
305
+
306
+
307
+ def replace_logits(self, num_classes):
308
+ self._num_classes = num_classes
309
+ self.logits = Unit3D(in_channels=384+384+128+128, output_channels=self._num_classes,
310
+ kernel_shape=[1, 1, 1],
311
+ padding=0,
312
+ activation_fn=None,
313
+ use_batch_norm=False,
314
+ use_bias=True,
315
+ name='logits')
316
+
317
+ def build(self):
318
+ for k in self.end_points.keys():
319
+ self.add_module(k, self.end_points[k])
320
+
321
+ def forward(self, x, pretrained=False, n_tune_layers=-1):
322
+ if pretrained:
323
+ assert n_tune_layers >= 0
324
+
325
+ freeze_endpoints = self.VALID_ENDPOINTS[:-n_tune_layers]
326
+ tune_endpoints = self.VALID_ENDPOINTS[-n_tune_layers:]
327
+ else:
328
+ freeze_endpoints = []
329
+ tune_endpoints = self.VALID_ENDPOINTS
330
+
331
+ # backbone, no gradient part
332
+ with torch.no_grad():
333
+ for end_point in freeze_endpoints:
334
+ if end_point in self.end_points:
335
+ x = self._modules[end_point](x) # use _modules to work with dataparallel
336
+
337
+ # backbone, gradient part
338
+ for end_point in tune_endpoints:
339
+ if end_point in self.end_points:
340
+ x = self._modules[end_point](x) # use _modules to work with dataparallel
341
+
342
+ # head
343
+ x = self.logits(self.dropout(self.avg_pool(x)))
344
+ if self._spatial_squeeze:
345
+ logits = x.squeeze(3).squeeze(3)
346
+ # logits is batch X time X classes, which is what we want to work with
347
+ return logits
348
+
349
+
350
+ def extract_features(self, x):
351
+ for end_point in self.VALID_ENDPOINTS:
352
+ if end_point in self.end_points:
353
+ x = self._modules[end_point](x)
354
+ return self.avg_pool(x)
videotransforms.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import numbers
3
+ import random
4
+
5
+ class RandomCrop(object):
6
+ """Crop the given video sequences (t x h x w) at a random location.
7
+ Args:
8
+ size (sequence or int): Desired output size of the crop. If size is an
9
+ int instead of sequence like (h, w), a square crop (size, size) is
10
+ made.
11
+ """
12
+
13
+ def __init__(self, size):
14
+ if isinstance(size, numbers.Number):
15
+ self.size = (int(size), int(size))
16
+ else:
17
+ self.size = size
18
+
19
+ @staticmethod
20
+ def get_params(img, output_size):
21
+ """Get parameters for ``crop`` for a random crop.
22
+ Args:
23
+ img (PIL Image): Image to be cropped.
24
+ output_size (tuple): Expected output size of the crop.
25
+ Returns:
26
+ tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
27
+ """
28
+ t, h, w, c = img.shape
29
+ th, tw = output_size
30
+ if w == tw and h == th:
31
+ return 0, 0, h, w
32
+
33
+ i = random.randint(0, h - th) if h!=th else 0
34
+ j = random.randint(0, w - tw) if w!=tw else 0
35
+ return i, j, th, tw
36
+
37
+ def __call__(self, imgs):
38
+
39
+ i, j, h, w = self.get_params(imgs, self.size)
40
+
41
+ imgs = imgs[:, i:i+h, j:j+w, :]
42
+ return imgs
43
+
44
+ def __repr__(self):
45
+ return self.__class__.__name__ + '(size={0})'.format(self.size)
46
+
47
+ class CenterCrop(object):
48
+ """Crops the given seq Images at the center.
49
+ Args:
50
+ size (sequence or int): Desired output size of the crop. If size is an
51
+ int instead of sequence like (h, w), a square crop (size, size) is
52
+ made.
53
+ """
54
+
55
+ def __init__(self, size):
56
+ if isinstance(size, numbers.Number):
57
+ self.size = (int(size), int(size))
58
+ else:
59
+ self.size = size
60
+
61
+ def __call__(self, imgs):
62
+ """
63
+ Args:
64
+ img (PIL Image): Image to be cropped.
65
+ Returns:
66
+ PIL Image: Cropped image.
67
+ """
68
+ t, h, w, c = imgs.shape
69
+ th, tw = self.size
70
+ i = int(np.round((h - th) / 2.))
71
+ j = int(np.round((w - tw) / 2.))
72
+
73
+ return imgs[:, i:i+th, j:j+tw, :]
74
+
75
+
76
+ def __repr__(self):
77
+ return self.__class__.__name__ + '(size={0})'.format(self.size)
78
+
79
+
80
+ class RandomHorizontalFlip(object):
81
+ """Horizontally flip the given seq Images randomly with a given probability.
82
+ Args:
83
+ p (float): probability of the image being flipped. Default value is 0.5
84
+ """
85
+
86
+ def __init__(self, p=0.5):
87
+ self.p = p
88
+
89
+ def __call__(self, imgs):
90
+ """
91
+ Args:
92
+ img (seq Images): seq Images to be flipped.
93
+ Returns:
94
+ seq Images: Randomly flipped seq images.
95
+ """
96
+ if random.random() < self.p:
97
+ # t x h x w
98
+ return np.flip(imgs, axis=2).copy()
99
+ return imgs
100
+
101
+ def __repr__(self):
102
+ return self.__class__.__name__ + '(p={})'.format(self.p)