Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import pandas as pd | |
import pymarc | |
from marcai.predict import predict | |
from marcai.process import process | |
from marcai.utils import load_config | |
from marcai.utils.parsing import record_dict | |
from marcai.pl import SimilarityVectorModel | |
root = os.path.dirname(os.path.abspath(__file__)) | |
def compare(file1, file2): | |
# Load records | |
record1 = pymarc.parse_xml_to_array(file1)[0] | |
record2 = pymarc.parse_xml_to_array(file2)[0] | |
# Turn into dataframes | |
df1 = pd.DataFrame.from_dict([record_dict(record1)]) | |
df2 = pd.DataFrame.from_dict([record_dict(record2)]) | |
df = process(df1, df2) | |
# Load config | |
config = load_config(os.path.join(root, "config.yaml")) | |
model = SimilarityVectorModel.from_pretrained("cdlib/marc-match-ai") | |
input_df = df[config["model"]["features"]] | |
# Run model | |
prediction = predict(model, input_df).item() | |
return {"match": prediction, "not match": 1 - prediction} | |
interface = gr.Interface( | |
fn=compare, | |
inputs=[gr.File(label="MARC XML File 1"), gr.File(label="MARC XML File 2")], | |
outputs=gr.Label(label="Classification"), | |
title="MARC Record Matcher", | |
description="Upload two MARC XML files with one record each.", | |
allow_flagging="never", | |
) | |
interface.launch() | |