Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from PIL import Image, ImageOps, ImageChops
|
3 |
+
import io
|
4 |
+
import fitz # PyMuPDF
|
5 |
+
from docx import Document
|
6 |
+
from rembg import remove
|
7 |
+
import gradio as gr
|
8 |
+
from hezar.models import Model
|
9 |
+
from ultralytics import YOLO
|
10 |
+
import json
|
11 |
+
|
12 |
+
# ایجاد دایرکتوریهای لازم
|
13 |
+
os.makedirs("static", exist_ok=True)
|
14 |
+
os.makedirs("output_images", exist_ok=True)
|
15 |
+
|
16 |
+
def trim_whitespace(image):
|
17 |
+
gray_image = ImageOps.grayscale(image)
|
18 |
+
inverted_image = ImageChops.invert(gray_image)
|
19 |
+
bbox = inverted_image.getbbox()
|
20 |
+
trimmed_image = image.crop(bbox)
|
21 |
+
return trimmed_image
|
22 |
+
|
23 |
+
def convert_pdf_to_images(pdf_path, zoom=2):
|
24 |
+
pdf_document = fitz.open(pdf_path)
|
25 |
+
images = []
|
26 |
+
for page_num in range(len(pdf_document)):
|
27 |
+
page = pdf_document.load_page(page_num)
|
28 |
+
matrix = fitz.Matrix(zoom, zoom)
|
29 |
+
pix = page.get_pixmap(matrix=matrix)
|
30 |
+
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
31 |
+
trimmed_image = trim_whitespace(image)
|
32 |
+
images.append(trimmed_image)
|
33 |
+
return images
|
34 |
+
|
35 |
+
def convert_docx_to_jpeg(docx_bytes):
|
36 |
+
document = Document(BytesIO(docx_bytes))
|
37 |
+
images = []
|
38 |
+
for rel in document.part.rels.values():
|
39 |
+
if "image" in rel.target_ref:
|
40 |
+
image_stream = rel.target_part.blob
|
41 |
+
image = Image.open(BytesIO(image_stream))
|
42 |
+
jpeg_image = BytesIO()
|
43 |
+
image.convert('RGB').save(jpeg_image, format="JPEG")
|
44 |
+
jpeg_image.seek(0)
|
45 |
+
images.append(Image.open(jpeg_image))
|
46 |
+
return images
|
47 |
+
|
48 |
+
def remove_background_from_image(image):
|
49 |
+
return remove(image)
|
50 |
+
|
51 |
+
def process_file(input_file):
|
52 |
+
file_extension = os.path.splitext(input_file.name)[1].lower()
|
53 |
+
images = []
|
54 |
+
|
55 |
+
if file_extension in ['.png', '.jpeg', '.jpg', '.bmp', '.gif']:
|
56 |
+
image = Image.open(input_file)
|
57 |
+
image = image.convert('RGB')
|
58 |
+
output_image = remove_background_from_image(image)
|
59 |
+
images.append(output_image)
|
60 |
+
elif file_extension == '.pdf':
|
61 |
+
images = convert_pdf_to_images(input_file.name)
|
62 |
+
images = [remove_background_from_image(image) for image in images]
|
63 |
+
elif file_extension in ['.docx', '.doc']:
|
64 |
+
images = convert_docx_to_jpeg(input_file.name)
|
65 |
+
images = [remove_background_from_image(image) for image in images]
|
66 |
+
else:
|
67 |
+
return "File format not supported."
|
68 |
+
|
69 |
+
input_folder = 'output_images'
|
70 |
+
for i, img in enumerate(images):
|
71 |
+
img.save(os.path.join(input_folder, f'image_{i}.jpg'))
|
72 |
+
|
73 |
+
return images
|
74 |
+
|
75 |
+
def run_detection_and_ocr():
|
76 |
+
# Load models
|
77 |
+
ocr_model = Model.load('hezarai/crnn-fa-printed-96-long')
|
78 |
+
yolo_model = YOLO("/content/drive/MyDrive/train3/weights/best.pt")
|
79 |
+
|
80 |
+
input_folder = 'output_images'
|
81 |
+
yolo_model.predict(input_folder, save=True, imgsz=320, conf=0.5, save_crop=True)
|
82 |
+
|
83 |
+
output_folder = '/content/runs/detect/predict'
|
84 |
+
results = []
|
85 |
+
|
86 |
+
for filename in os.listdir(input_folder):
|
87 |
+
if filename.endswith('.JPEG') or filename.endswith('.jpg'):
|
88 |
+
image_path = os.path.join(input_folder, filename)
|
89 |
+
crop_folder = os.path.join(output_folder, 'crops')
|
90 |
+
crops = []
|
91 |
+
for crop_label in os.listdir(crop_folder):
|
92 |
+
crop_label_folder = os.path.join(crop_folder, crop_label)
|
93 |
+
if os.path.isdir(crop_label_folder):
|
94 |
+
for crop_filename in os.listdir(crop_label_folder):
|
95 |
+
crop_image_path = os.path.join(crop_label_folder, crop_filename)
|
96 |
+
text_prediction = predict_text(ocr_model, crop_image_path)
|
97 |
+
crops.append({
|
98 |
+
'crop_image_path': crop_image_path,
|
99 |
+
'text_prediction': text_prediction,
|
100 |
+
'class_label': crop_label
|
101 |
+
})
|
102 |
+
results.append({
|
103 |
+
'image': filename,
|
104 |
+
'crops': crops
|
105 |
+
})
|
106 |
+
|
107 |
+
output_json_path = 'output.json'
|
108 |
+
with open(output_json_path, 'w', encoding='utf-8') as f:
|
109 |
+
json.dump(results, f, ensure_ascii=False, indent=4)
|
110 |
+
|
111 |
+
return output_json_path
|
112 |
+
|
113 |
+
def predict_text(model, image_path):
|
114 |
+
try:
|
115 |
+
image = Image.open(image_path)
|
116 |
+
image = image.resize((320, 320))
|
117 |
+
output = model.predict(image)
|
118 |
+
if isinstance(output, list):
|
119 |
+
return ' '.join([item['text'] for item in output])
|
120 |
+
return str(output)
|
121 |
+
except FileNotFoundError:
|
122 |
+
return "N/A"
|
123 |
+
|
124 |
+
def gradio_interface(input_file):
|
125 |
+
process_file(input_file)
|
126 |
+
json_output = run_detection_and_ocr()
|
127 |
+
with open(json_output, 'r', encoding='utf-8') as f:
|
128 |
+
return json.load(f)
|
129 |
+
|
130 |
+
iface = gr.Interface(
|
131 |
+
fn=gradio_interface,
|
132 |
+
inputs=gr.File(label="Upload Word, PDF, or Image"),
|
133 |
+
outputs=gr.JSON(label="JSON Output"),
|
134 |
+
title="Document to JSON Converter with Background Removal"
|
135 |
+
)
|
136 |
+
|
137 |
+
if __name__ == "__main__":
|
138 |
+
iface.launch()
|