FCFF / app.py
cdcvd's picture
Update app.py
7a85f5b verified
import os
from PIL import Image, ImageOps, ImageChops
import io
import fitz # PyMuPDF
from docx import Document
from rembg import remove
import gradio as gr
from hezar.models import Model
from ultralytics import YOLO
import json
# ایجاد دایرکتوری‌های لازم
os.makedirs("static", exist_ok=True)
os.makedirs("output_images", exist_ok=True)
def trim_whitespace(image):
gray_image = ImageOps.grayscale(image)
inverted_image = ImageChops.invert(gray_image)
bbox = inverted_image.getbbox()
trimmed_image = image.crop(bbox)
return trimmed_image
def convert_pdf_to_images(pdf_path, zoom=2):
pdf_document = fitz.open(pdf_path)
images = []
for page_num in range(len(pdf_document)):
page = pdf_document.load_page(page_num)
matrix = fitz.Matrix(zoom, zoom)
pix = page.get_pixmap(matrix=matrix)
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
trimmed_image = trim_whitespace(image)
images.append(trimmed_image)
return images
def convert_docx_to_jpeg(docx_bytes):
document = Document(BytesIO(docx_bytes))
images = []
for rel in document.part.rels.values():
if "image" in rel.target_ref:
image_stream = rel.target_part.blob
image = Image.open(BytesIO(image_stream))
jpeg_image = BytesIO()
image.convert('RGB').save(jpeg_image, format="JPEG")
jpeg_image.seek(0)
images.append(Image.open(jpeg_image))
return images
def remove_background_from_image(image):
return remove(image)
def process_file(input_file):
file_extension = os.path.splitext(input_file.name)[1].lower()
images = []
if file_extension in ['.png', '.jpeg', '.jpg', '.bmp', '.gif']:
image = Image.open(input_file)
output_image = remove_background_from_image(image)
images.append(output_image)
elif file_extension == '.pdf':
images = convert_pdf_to_images(input_file.name)
images = [remove_background_from_image(image) for image in images]
elif file_extension in ['.docx', '.doc']:
images = convert_docx_to_jpeg(input_file.name)
images = [remove_background_from_image(image) for image in images]
else:
return "File format not supported."
input_folder = 'output_images'
for i, img in enumerate(images):
if img.mode == 'RGBA':
img = img.convert('RGB')
img.save(os.path.join(input_folder, f'image_{i}.jpg'))
return images
def run_detection_and_ocr():
# Load models
ocr_model = Model.load('hezarai/crnn-fa-printed-96-long')
yolo_model = YOLO("best_300_D_check.pt")
input_folder = 'output_images'
yolo_model.predict(input_folder, save=True, conf=0.5, save_crop=True)
output_folder = 'runs/detect/predict' # Remove leading slash if needed
crop_folder = os.path.join(output_folder, 'crops')
results = []
for filename in os.listdir(input_folder):
if filename.endswith('.JPEG') or filename.endswith('.jpg'):
image_path = os.path.join(input_folder, filename)
# Check if crop_folder exists
if os.path.exists(crop_folder):
crops = []
for crop_label in os.listdir(crop_folder):
crop_label_folder = os.path.join(crop_folder, crop_label)
if os.path.isdir(crop_label_folder):
for crop_filename in os.listdir(crop_label_folder):
crop_image_path = os.path.join(crop_label_folder, crop_filename)
text_prediction = predict_text(ocr_model, crop_image_path)
crops.append({
'crop_image_path': crop_image_path,
'text_prediction': text_prediction,
'class_label': crop_label
})
results.append({
'image': filename,
'crops': crops
})
output_json_path = 'output.json'
with open(output_json_path, 'w', encoding='utf-8') as f:
json.dump(results, f, ensure_ascii=False, indent=4)
return output_json_path
def predict_text(model, image_path):
try:
image = Image.open(image_path)
image = image.resize((320, 320))
output = model.predict(image)
if isinstance(output, list):
return ' '.join([item['text'] for item in output])
return str(output)
except FileNotFoundError:
return "N/A"
def gradio_interface(input_file):
process_file(input_file)
json_output = run_detection_and_ocr()
with open(json_output, 'r', encoding='utf-8') as f:
return json.load(f)
iface = gr.Interface(
fn=gradio_interface,
inputs=gr.File(label="Upload Word, PDF, or Image"),
outputs=gr.JSON(label="JSON Output"),
title="Document to JSON Converter with Background Removal"
)
if __name__ == "__main__":
iface.launch()