Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import fitz # PyMuPDF
|
3 |
-
from models import evaluate_with_gpt, evaluate_with_gemma, evaluate_with_bloom, evaluate_with_jabir, evaluate_with_llama
|
4 |
|
5 |
def extract_text_from_pdf(pdf_file):
|
6 |
document = fitz.open(pdf_file)
|
@@ -17,9 +17,12 @@ def evaluate_all_models(pdf_file, job_description):
|
|
17 |
bloom_result = evaluate_with_bloom(resume_text, job_description)
|
18 |
jabir_result = evaluate_with_jabir(resume_text, job_description)
|
19 |
llama_result = evaluate_with_llama(resume_text, job_description)
|
20 |
-
|
|
|
|
|
|
|
21 |
import gradio as gr
|
22 |
-
from models import evaluate_with_gpt, evaluate_with_gemma, evaluate_with_bloom, evaluate_with_jabir, evaluate_with_llama
|
23 |
|
24 |
def evaluate_multiple_resumes(resume_texts, job_description, model):
|
25 |
results = []
|
@@ -34,13 +37,16 @@ def evaluate_multiple_resumes(resume_texts, job_description, model):
|
|
34 |
result = evaluate_with_jabir(resume_text, job_description)
|
35 |
elif model == "llama":
|
36 |
result = evaluate_with_llama(resume_text, job_description)
|
|
|
|
|
37 |
else:
|
38 |
gpt_result = evaluate_with_gpt(resume_text, job_description)
|
39 |
gemma_result = evaluate_with_gemma(resume_text, job_description)
|
40 |
bloom_result = evaluate_with_bloom(resume_text, job_description)
|
41 |
jabir_result = evaluate_with_jabir(resume_text, job_description)
|
42 |
llama_result = evaluate_with_llama(resume_text, job_description)
|
43 |
-
|
|
|
44 |
results.append(f"Result for Resume:\n{result}\n\n")
|
45 |
return "\n".join(results)
|
46 |
|
@@ -49,7 +55,7 @@ iface = gr.Interface(
|
|
49 |
inputs=[
|
50 |
gr.Textbox(lines=20, label="Paste Resumes (separate multiple resumes by two newlines)"),
|
51 |
gr.Textbox(lines=10, label="Job Description"),
|
52 |
-
gr.Radio(choices=["GPT-4o", "Gemma", "Bloom", "jabir", "llama", "All"], label="Choose Model")
|
53 |
],
|
54 |
outputs="text",
|
55 |
title="Multiple Resume Evaluator"
|
|
|
1 |
import gradio as gr
|
2 |
import fitz # PyMuPDF
|
3 |
+
from models import evaluate_with_gpt, evaluate_with_gemma, evaluate_with_bloom, evaluate_with_jabir, evaluate_with_llama ,evaluate_with_qwen
|
4 |
|
5 |
def extract_text_from_pdf(pdf_file):
|
6 |
document = fitz.open(pdf_file)
|
|
|
17 |
bloom_result = evaluate_with_bloom(resume_text, job_description)
|
18 |
jabir_result = evaluate_with_jabir(resume_text, job_description)
|
19 |
llama_result = evaluate_with_llama(resume_text, job_description)
|
20 |
+
qwen_result=evaluate_with_qwen(resume_text, job_description)
|
21 |
+
|
22 |
+
|
23 |
+
return f"GPT-4o Result:\n{gpt_result}\n\nGemma Result:\n{gemma_result}\n\nBloom Result:\n{bloom_result}\n\nJabir Result:\n{jabir_result}\n\nLlama Result:\n{llama_result}\n\nqwen_result:\n{qwen_result}"
|
24 |
import gradio as gr
|
25 |
+
from models import evaluate_with_gpt, evaluate_with_gemma, evaluate_with_bloom, evaluate_with_jabir, evaluate_with_llama,evaluate_with_qwen
|
26 |
|
27 |
def evaluate_multiple_resumes(resume_texts, job_description, model):
|
28 |
results = []
|
|
|
37 |
result = evaluate_with_jabir(resume_text, job_description)
|
38 |
elif model == "llama":
|
39 |
result = evaluate_with_llama(resume_text, job_description)
|
40 |
+
elif model=="qwen":
|
41 |
+
evaluate_with_qwen(resume_text, job_description)
|
42 |
else:
|
43 |
gpt_result = evaluate_with_gpt(resume_text, job_description)
|
44 |
gemma_result = evaluate_with_gemma(resume_text, job_description)
|
45 |
bloom_result = evaluate_with_bloom(resume_text, job_description)
|
46 |
jabir_result = evaluate_with_jabir(resume_text, job_description)
|
47 |
llama_result = evaluate_with_llama(resume_text, job_description)
|
48 |
+
qwen_result=evaluate_with_qwen(resume_text, job_description)
|
49 |
+
result = f"GPT-4o Result:\n{gpt_result}\n\nGemma Result:\n{gemma_result}\n\nBloom Result:\n{bloom_result}\n\nJabir Result:\n{jabir_result}\n\nLlama Result:\n{llama_result}\n\nqwen_result:\n{qwen_result}"
|
50 |
results.append(f"Result for Resume:\n{result}\n\n")
|
51 |
return "\n".join(results)
|
52 |
|
|
|
55 |
inputs=[
|
56 |
gr.Textbox(lines=20, label="Paste Resumes (separate multiple resumes by two newlines)"),
|
57 |
gr.Textbox(lines=10, label="Job Description"),
|
58 |
+
gr.Radio(choices=["GPT-4o", "Gemma", "Bloom", "jabir", "llama", "qwen","All"], label="Choose Model")
|
59 |
],
|
60 |
outputs="text",
|
61 |
title="Multiple Resume Evaluator"
|