Update applyVad.py
Browse files- applyVad.py +85 -105
applyVad.py
CHANGED
@@ -1,105 +1,85 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
#
|
21 |
-
#
|
22 |
-
#
|
23 |
-
#
|
24 |
-
|
25 |
-
|
26 |
-
#
|
27 |
-
|
28 |
-
|
29 |
-
#
|
30 |
-
#
|
31 |
-
#
|
32 |
-
|
33 |
-
# #
|
34 |
-
#
|
35 |
-
|
36 |
-
|
37 |
-
#
|
38 |
-
#
|
39 |
-
|
40 |
-
#
|
41 |
-
|
42 |
-
#
|
43 |
-
#
|
44 |
-
|
45 |
-
#
|
46 |
-
|
47 |
-
#
|
48 |
-
|
49 |
-
|
50 |
-
#
|
51 |
-
#
|
52 |
-
#
|
53 |
-
|
54 |
-
#
|
55 |
-
|
56 |
-
#
|
57 |
-
#
|
58 |
-
|
59 |
-
|
60 |
-
#
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
frames = [audio_int16[i:i + frame_size] for i in range(0, len(audio_int16), frame_size)]
|
87 |
-
|
88 |
-
# Filter out non-speech frames
|
89 |
-
voiced_frames = []
|
90 |
-
for frame in frames:
|
91 |
-
if len(frame) == frame_size and vad.is_speech(frame.tobytes(), sample_rate=sr):
|
92 |
-
voiced_frames.append(frame)
|
93 |
-
|
94 |
-
# Concatenate the voiced frames
|
95 |
-
voiced_audio = np.concatenate(voiced_frames)
|
96 |
-
voiced_audio = np.float32(voiced_audio) / 32767
|
97 |
-
|
98 |
-
return voiced_audio
|
99 |
-
|
100 |
-
|
101 |
-
# In[ ]:
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
1 |
+
|
2 |
+
import webrtcvad
|
3 |
+
import numpy as np
|
4 |
+
import librosa
|
5 |
+
def apply_vad(audio, sr, frame_duration=30, aggressiveness=3):
|
6 |
+
'''
|
7 |
+
Voice Activity Detection (VAD): It is a technique used to determine whether a segment of audio contains speech.
|
8 |
+
This is useful in noisy environments where you want to filter out non-speech parts of the audio.
|
9 |
+
webrtcvad: This is a Python package based on the VAD from the WebRTC (Web Real-Time Communication) project.
|
10 |
+
It helps detect speech in small chunks of audio.
|
11 |
+
'''
|
12 |
+
vad = webrtcvad.Vad()
|
13 |
+
audio_int16 = np.int16(audio * 32767)
|
14 |
+
frame_size = int(sr * frame_duration / 1000)
|
15 |
+
frames = [audio_int16[i:i + frame_size] for i in range(0, len(audio_int16), frame_size)]
|
16 |
+
voiced_audio = np.concatenate([frame for frame in frames if vad.is_speech(frame.tobytes(), sample_rate=sr)])
|
17 |
+
voiced_audio = np.float32(voiced_audio) / 32767
|
18 |
+
return voiced_audio
|
19 |
+
|
20 |
+
# import webrtcvad
|
21 |
+
# import librosa
|
22 |
+
# import numpy as np
|
23 |
+
# def apply_vad(audio, sr, frame_duration_ms=30):
|
24 |
+
# # Initialize WebRTC VAD
|
25 |
+
# vad = webrtcvad.Vad()
|
26 |
+
# vad.set_mode(1) # Set aggressiveness mode (0-3)
|
27 |
+
|
28 |
+
# # Convert to 16kHz if not already
|
29 |
+
# if sr != 16000:
|
30 |
+
# audio = librosa.resample(audio, orig_sr=sr, target_sr=16000)
|
31 |
+
# sr = 16000
|
32 |
+
|
33 |
+
# # Convert to 16-bit PCM
|
34 |
+
# audio = (audio * 32768).astype(np.int16)
|
35 |
+
|
36 |
+
# frame_length = int(sr * (frame_duration_ms / 1000.0)) # Calculate fram
|
37 |
+
# e length in samples
|
38 |
+
# bytes_per_frame = frame_length * 2 # 16-bit audio has 2 bytes per sample
|
39 |
+
|
40 |
+
# # Apply VAD to the audio
|
41 |
+
# voiced_frames = []
|
42 |
+
# for i in range(0, len(audio), frame_length):
|
43 |
+
# frame = audio[i:i + frame_length].tobytes()
|
44 |
+
# if len(frame) == bytes_per_frame and vad.is_speech(frame, sr):
|
45 |
+
# voiced_frames.extend(audio[i:i + frame_length])
|
46 |
+
|
47 |
+
# # Return the VAD-filtered audio
|
48 |
+
# return np.array(voiced_frames)
|
49 |
+
|
50 |
+
# import webrtcvad
|
51 |
+
# import numpy as np
|
52 |
+
# import librosa
|
53 |
+
|
54 |
+
# def apply_vad(audio, sr, frame_duration=30, aggressiveness=3):
|
55 |
+
# '''
|
56 |
+
# Voice Activity Detection (VAD): Detects speech in audio.
|
57 |
+
# '''
|
58 |
+
# vad = webrtcvad.Vad(aggressiveness)
|
59 |
+
|
60 |
+
# # Resample to 16000 Hz if not already (recommended for better compatibility)
|
61 |
+
# if sr != 16000:
|
62 |
+
# audio = librosa.resample(audio, orig_sr=sr, target_sr=16000)
|
63 |
+
# sr = 16000
|
64 |
+
|
65 |
+
# # Convert to 16-bit PCM format expected by webrtcvad
|
66 |
+
# audio_int16 = np.int16(audio * 32767)
|
67 |
+
|
68 |
+
# # Ensure frame size matches WebRTC's expected lengths
|
69 |
+
# frame_size = int(sr * frame_duration / 1000)
|
70 |
+
# if frame_size % 2 != 0:
|
71 |
+
# frame_size -= 1 # Make sure it's even to avoid processing issues
|
72 |
+
|
73 |
+
# frames = [audio_int16[i:i + frame_size] for i in range(0, len(audio_int16), frame_size)]
|
74 |
+
|
75 |
+
# # Filter out non-speech frames
|
76 |
+
# voiced_frames = []
|
77 |
+
# for frame in frames:
|
78 |
+
# if len(frame) == frame_size and vad.is_speech(frame.tobytes(), sample_rate=sr):
|
79 |
+
# voiced_frames.append(frame)
|
80 |
+
|
81 |
+
# # Concatenate the voiced frames
|
82 |
+
# voiced_audio = np.concatenate(voiced_frames)
|
83 |
+
# voiced_audio = np.float32(voiced_audio) / 32767
|
84 |
+
|
85 |
+
# return voiced_audio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|