|
|
|
|
|
|
|
|
import numpy as np |
|
|
import joblib |
|
|
import pandas as pd |
|
|
from flask import Flask, request, jsonify |
|
|
|
|
|
|
|
|
rf_superkart_prediction_api = Flask("SuperKart Sales Prediction with XGBoost") |
|
|
|
|
|
|
|
|
rf_model = joblib.load("superkart_sales_prediction_model_v1_0.joblib") |
|
|
|
|
|
|
|
|
@rf_superkart_prediction_api.get('/') |
|
|
def home(): |
|
|
""" |
|
|
This function handles GET requests to the root URL ('/') of the API. |
|
|
It returns a simple welcome message. |
|
|
""" |
|
|
return "Welcome to the SuperKart Sales Prediction API With Random Forest!" |
|
|
|
|
|
|
|
|
@rf_superkart_prediction_api.post('/v1/predict') |
|
|
def predict_sales(): |
|
|
""" |
|
|
This function handles POST requests to the '/v1/predict' endpoint. |
|
|
It expects a JSON payload containing store details and returns |
|
|
the predicted sales as a JSON response. |
|
|
""" |
|
|
|
|
|
try: |
|
|
|
|
|
data = request.get_json() |
|
|
|
|
|
|
|
|
sample = { |
|
|
'Product_Weight': data['Product_Weight'], |
|
|
'Product_Sugar_Content': data['Product_Sugar_Content'], |
|
|
'Product_Allocated_Area': data['Product_Allocated_Area'], |
|
|
'Product_MRP': data['Product_MRP'], |
|
|
'Store_Size': data['Store_Size'], |
|
|
'Store_Location_City_Type': data['Store_Location_City_Type'], |
|
|
'Store_Type': data['Store_Type'], |
|
|
'Product_Code': data['Product_Code'], |
|
|
'Store_Age': data['Store_Age'], |
|
|
'Product_Category': data['Product_Category'] |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
input_data = pd.DataFrame([sample]) |
|
|
|
|
|
|
|
|
sales_prediction = rf_model.predict(input_data)[0] |
|
|
|
|
|
|
|
|
return jsonify({'Sales': sales_prediction.tolist()}) |
|
|
except Exception as e: |
|
|
print(f"Error in prediction: {e}") |
|
|
return jsonify({'error': str(e)}) |
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
rf_superkart_prediction_api.run(debug=True) |
|
|
|