ccwizard's picture
Upload folder using huggingface_hub
985872b verified
# Import necessary libraries
import numpy as np
import joblib # For loading the serialized model
import pandas as pd # For data manipulation
from flask import Flask, request, jsonify # For creating the Flask API
# Initialize the Flask application
rf_superkart_prediction_api = Flask("SuperKart Sales Prediction with XGBoost")
# Load the trained machine learning model
rf_model = joblib.load("superkart_sales_prediction_model_v1_0.joblib")
# Define a route for the home page (GET request)
@rf_superkart_prediction_api.get('/')
def home():
"""
This function handles GET requests to the root URL ('/') of the API.
It returns a simple welcome message.
"""
return "Welcome to the SuperKart Sales Prediction API With Random Forest!"
# Define an endpoint for single property prediction (POST request)
@rf_superkart_prediction_api.post('/v1/predict')
def predict_sales():
"""
This function handles POST requests to the '/v1/predict' endpoint.
It expects a JSON payload containing store details and returns
the predicted sales as a JSON response.
"""
try:
# Get the JSON data from the request body
data = request.get_json()
# Extract relevant features from the JSON data
sample = {
'Product_Weight': data['Product_Weight'],
'Product_Sugar_Content': data['Product_Sugar_Content'],
'Product_Allocated_Area': data['Product_Allocated_Area'],
'Product_MRP': data['Product_MRP'],
'Store_Size': data['Store_Size'],
'Store_Location_City_Type': data['Store_Location_City_Type'],
'Store_Type': data['Store_Type'],
'Product_Code': data['Product_Code'],
'Store_Age': data['Store_Age'],
'Product_Category': data['Product_Category']
}
# Convert the extracted data into a Pandas DataFrame
input_data = pd.DataFrame([sample])
# Make prediction (get log_price)
sales_prediction = rf_model.predict(input_data)[0]
# Return the prediction
return jsonify({'Sales': sales_prediction.tolist()})
except Exception as e:
print(f"Error in prediction: {e}")
return jsonify({'error': str(e)})
# Run the Flask application in debug mode if this script is executed directly
if __name__ == '__main__':
rf_superkart_prediction_api.run(debug=True)