Spaces:
Sleeping
Sleeping
import torch | |
from transformers import pipeline | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
pipe = pipeline( | |
"automatic-speech-recognition", model="openai/whisper-base", device=device | |
) | |
from datasets import load_dataset | |
# dataset = load_dataset("facebook/voxpopuli", "en", split="validation", streaming=True, trust_remote_code=True) | |
# sample = next(iter(dataset)) | |
def translate(audio): | |
outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "fr"}) # "language": "fr" | |
return outputs["text"] | |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan | |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") | |
model = SpeechT5ForTextToSpeech.from_pretrained("ccourc23/fine_tuned_SpeechT5") | |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") | |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) | |
def synthesise(text): | |
inputs = processor(text=text, return_tensors="pt") | |
speech = model.generate_speech( | |
inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder | |
) | |
return speech.cpu() | |
import numpy as np | |
target_dtype = np.int16 | |
max_range = np.iinfo(target_dtype).max | |
def speech_to_speech_translation(audio): | |
translated_text = translate(audio) | |
synthesised_speech = synthesise(translated_text) | |
synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16) | |
return 16000, synthesised_speech | |
import gradio as gr | |
demo = gr.Blocks() | |
mic_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(sources="microphone", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
) | |
file_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(sources="upload", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
) | |
with demo: | |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) | |
demo.launch(debug=True, share=True) | |