Spaces:
Runtime error
Runtime error
integrate model download
Browse files
app.py
CHANGED
@@ -18,7 +18,7 @@ from PIL import Image
|
|
18 |
|
19 |
|
20 |
st.set_page_config(
|
21 |
-
page_title="
|
22 |
page_icon="🎹",
|
23 |
)
|
24 |
|
|
|
18 |
|
19 |
|
20 |
st.set_page_config(
|
21 |
+
page_title="Test",
|
22 |
page_icon="🎹",
|
23 |
)
|
24 |
|
src/music2cocktailrep/training/latent_translation/setup_trained_model.py
CHANGED
@@ -5,11 +5,22 @@ from src.music2cocktailrep.training.latent_translation.vae_model import get_gml_
|
|
5 |
from src.music.config import TRANSLATION_VAE_CHKP_PATH
|
6 |
from src.cocktails.utilities.cocktail_utilities import get_bunch_of_rep_keys
|
7 |
import os
|
|
|
|
|
8 |
|
9 |
-
|
10 |
rep_keys = get_bunch_of_rep_keys()['custom']
|
11 |
|
12 |
def setup_trained_model(checkpoint_path=TRANSLATION_VAE_CHKP_PATH):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
with open(checkpoint_path + 'params.json', 'r') as f:
|
14 |
params = json.load(f)
|
15 |
|
@@ -28,7 +39,6 @@ def setup_trained_model(checkpoint_path=TRANSLATION_VAE_CHKP_PATH):
|
|
28 |
def normalize_music_input(input):
|
29 |
return (input - stats_music[0]) / stats_music[1]
|
30 |
|
31 |
-
model_path = checkpoint_path + 'checkpoints_best_eval.save'
|
32 |
model.load_state_dict(torch.load(model_path))
|
33 |
model.eval()
|
34 |
|
|
|
5 |
from src.music.config import TRANSLATION_VAE_CHKP_PATH
|
6 |
from src.cocktails.utilities.cocktail_utilities import get_bunch_of_rep_keys
|
7 |
import os
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
from shutil import copy
|
10 |
|
11 |
+
TOKEN = os.environ['secret']
|
12 |
rep_keys = get_bunch_of_rep_keys()['custom']
|
13 |
|
14 |
def setup_trained_model(checkpoint_path=TRANSLATION_VAE_CHKP_PATH):
|
15 |
+
# download translation model
|
16 |
+
repo_id = "ccolas/translation_vae"
|
17 |
+
filename = "checkpoints_best_eval_old.save"
|
18 |
+
downloaded_path = hf_hub_download(repo_id=repo_id,
|
19 |
+
filename=filename,
|
20 |
+
repo_type='model',
|
21 |
+
use_auth_token=TOKEN)
|
22 |
+
model_path = checkpoint_path + 'checkpoints_best_eval.save'
|
23 |
+
copy(downloaded_path, model_path)
|
24 |
with open(checkpoint_path + 'params.json', 'r') as f:
|
25 |
params = json.load(f)
|
26 |
|
|
|
39 |
def normalize_music_input(input):
|
40 |
return (input - stats_music[0]) / stats_music[1]
|
41 |
|
|
|
42 |
model.load_state_dict(torch.load(model_path))
|
43 |
model.eval()
|
44 |
|