TastyPiano / src /cocktails /utilities /analysis_utilities.py
Cédric Colas
initial commit
e775f6d
raw
history blame
No virus
7.44 kB
import numpy as np
import matplotlib.pyplot as plt
from src.cocktails.utilities.ingredients_utilities import ingredient_list, extract_ingredients, ingredients_per_type
color_codes = dict(ancestral='#000000',
spirit_forward='#2320D2',
duo='#6E20D2',
champagne_cocktail='#25FFCA',
complex_highball='#068F25',
simple_highball='#25FF57',
collins='#77FF96',
julep='#25B8FF',
simple_sour='#FBD756',
complex_sour='#DCAD07',
simple_sour_with_juice='#FF5033',
complex_sour_with_juice='#D42306',
# simple_sour_with_egg='#FF9C54',
# complex_sour_with_egg='#CF5700',
# almost_simple_sor='#FF5033',
# almost_sor='#D42306',
# almost_sor_with_egg='#D42306',
other='#9B9B9B'
)
def get_subcategories(data):
subcategories = np.array(data['subcategory'])
sub_categories_list = sorted(set(subcategories))
subcat_count = dict(zip(sub_categories_list, [0] * len(sub_categories_list)))
for sc in data['subcategory']:
subcat_count[sc] += 1
return subcategories, sub_categories_list, subcat_count
def get_ingredient_count(data):
ingredient_counts = dict(zip(ingredient_list, [0] * len(ingredient_list)))
for ing_str in data['ingredients_str']:
ingredients, _ = extract_ingredients(ing_str)
for ing in ingredients:
ingredient_counts[ing] += 1
return ingredient_counts
def compute_eucl_dist(a, b):
return np.sqrt(np.sum((a - b)**2))
def recipe_contains(ingredients, stuff):
if stuff in ingredient_list:
return stuff in ingredients
elif stuff == 'juice':
return any(['juice' in ing and 'lemon' not in ing and 'lime' not in ing for ing in ingredients])
elif stuff == 'bubbles':
return any([ing in ['soda', 'tonic', 'cola', 'sparkling wine', 'ginger beer'] for ing in ingredients])
elif stuff == 'acid':
return any([ing in ['lemon juice', 'lime juice'] for ing in ingredients])
elif stuff == 'vermouth':
return any([ing in ingredients_per_type['vermouth'] for ing in ingredients])
elif stuff == 'plain sweet':
plain_sweet = ingredients_per_type['sweeteners']
return any([ing in plain_sweet for ing in ingredients])
elif stuff == 'sweet':
sweet = ingredients_per_type['sweeteners'] + ingredients_per_type['liqueur'] + ['sweet vermouth', 'lillet blanc']
return any([ing in sweet for ing in ingredients])
elif stuff == 'spirit':
return any([ing in ingredients_per_type['liquor'] for ing in ingredients])
else:
raise ValueError
def radar_factory(num_vars, frame='circle'):
# from stackoverflow's post? Or matplotlib's blog
"""
Create a radar chart with `num_vars` axes.
This function creates a RadarAxes projection and registers it.
Parameters
----------
num_vars : int
Number of variables for radar chart.
frame : {'circle', 'polygon'}
Shape of frame surrounding axes.
"""
import numpy as np
from matplotlib.patches import Circle, RegularPolygon
from matplotlib.path import Path
from matplotlib.projections.polar import PolarAxes
from matplotlib.projections import register_projection
from matplotlib.spines import Spine
from matplotlib.transforms import Affine2D
# calculate evenly-spaced axis angles
theta = np.linspace(0, 2*np.pi, num_vars, endpoint=False)
class RadarAxes(PolarAxes):
name = 'radar'
# use 1 line segment to connect specified points
RESOLUTION = 1
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# rotate plot such that the first axis is at the top
self.set_theta_zero_location('N')
def fill(self, *args, closed=True, **kwargs):
"""Override fill so that line is closed by default"""
return super().fill(closed=closed, *args, **kwargs)
def plot(self, *args, **kwargs):
"""Override plot so that line is closed by default"""
lines = super().plot(*args, **kwargs)
for line in lines:
self._close_line(line)
def _close_line(self, line):
x, y = line.get_data()
# FIXME: markers at x[0], y[0] get doubled-up
if x[0] != x[-1]:
x = np.append(x, x[0])
y = np.append(y, y[0])
line.set_data(x, y)
def set_varlabels(self, labels):
self.set_thetagrids(np.degrees(theta), labels)
def _gen_axes_patch(self):
# The Axes patch must be centered at (0.5, 0.5) and of radius 0.5
# in axes coordinates.
if frame == 'circle':
return Circle((0.5, 0.5), 0.5)
elif frame == 'polygon':
return RegularPolygon((0.5, 0.5), num_vars,
radius=.5, edgecolor="k")
else:
raise ValueError("Unknown value for 'frame': %s" % frame)
def _gen_axes_spines(self):
if frame == 'circle':
return super()._gen_axes_spines()
elif frame == 'polygon':
# spine_type must be 'left'/'right'/'top'/'bottom'/'circle'.
spine = Spine(axes=self,
spine_type='circle',
path=Path.unit_regular_polygon(num_vars))
# unit_regular_polygon gives a polygon of radius 1 centered at
# (0, 0) but we want a polygon of radius 0.5 centered at (0.5,
# 0.5) in axes coordinates.
spine.set_transform(Affine2D().scale(.5).translate(.5, .5)
+ self.transAxes)
return {'polar': spine}
else:
raise ValueError("Unknown value for 'frame': %s" % frame)
register_projection(RadarAxes)
return theta
def plot_radar_cocktail(representation, labels_dim, labels_cocktails, save_path=None, to_show=False, to_save=False):
assert to_show or to_save, 'either show or save'
assert representation.ndim == 2
n_data, dim_rep = representation.shape
assert len(labels_cocktails) == n_data
assert len(labels_dim) == dim_rep
assert n_data <= 5, 'max 5 representation_analysis please'
theta = radar_factory(dim_rep, frame='circle')
fig, ax = plt.subplots(figsize=(9, 9), subplot_kw=dict(projection='radar'))
fig.subplots_adjust(wspace=0.25, hspace=0.20, top=0.85, bottom=0.05)
colors = ['b', 'r', 'g', 'm', 'y']
# Plot the four cases from the example data on separate axes
ax.set_rgrids([0.2, 0.4, 0.6, 0.8])
for d, color in zip(representation, colors):
ax.plot(theta, d, color=color)
for d, color in zip(representation, colors):
ax.fill(theta, d, facecolor=color, alpha=0.25)
ax.set_varlabels(labels_dim)
# add legend relative to top-left plot
legend = ax.legend(labels_cocktails, loc=(0.9, .95),
labelspacing=0.1, fontsize='small')
if to_save:
plt.savefig(save_path, bbox_artists=(legend,), dpi=200)
else:
plt.show()