Spaces:
Running
Running
| import os | |
| import sys | |
| import torch | |
| import shutil | |
| import librosa | |
| import warnings | |
| import subprocess | |
| import numpy as np | |
| import gradio as gr | |
| import librosa.display | |
| import matplotlib.pyplot as plt | |
| import torchvision.transforms as transforms | |
| from PIL import Image | |
| from collections import Counter | |
| from model import EvalNet | |
| from utils import ( | |
| get_modelist, | |
| find_mp3_files, | |
| download, | |
| _L, | |
| CACHE_DIR, | |
| TRANSLATE, | |
| CLASSES, | |
| ) | |
| def most_common_element(input_list): | |
| counter = Counter(input_list) | |
| mce, _ = counter.most_common(1)[0] | |
| return mce | |
| def mp3_to_mel(audio_path: str, width=11.4): | |
| y, sr = librosa.load(audio_path) | |
| mel_spec = librosa.feature.melspectrogram(y=y, sr=sr) | |
| log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max) | |
| dur = librosa.get_duration(y=y, sr=sr) | |
| total_frames = log_mel_spec.shape[1] | |
| step = int(width * total_frames / dur) | |
| count = int(total_frames / step) | |
| begin = int(0.5 * (total_frames - count * step)) | |
| end = begin + step * count | |
| for i in range(begin, end, step): | |
| librosa.display.specshow(log_mel_spec[:, i : i + step]) | |
| plt.axis("off") | |
| plt.savefig( | |
| f"{CACHE_DIR}/mel_{round(dur, 2)}_{i}.jpg", | |
| bbox_inches="tight", | |
| pad_inches=0.0, | |
| ) | |
| plt.close() | |
| def mp3_to_cqt(audio_path: str, width=11.4): | |
| y, sr = librosa.load(audio_path) | |
| cqt_spec = librosa.cqt(y=y, sr=sr) | |
| log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max) | |
| dur = librosa.get_duration(y=y, sr=sr) | |
| total_frames = log_cqt_spec.shape[1] | |
| step = int(width * total_frames / dur) | |
| count = int(total_frames / step) | |
| begin = int(0.5 * (total_frames - count * step)) | |
| end = begin + step * count | |
| for i in range(begin, end, step): | |
| librosa.display.specshow(log_cqt_spec[:, i : i + step]) | |
| plt.axis("off") | |
| plt.savefig( | |
| f"{CACHE_DIR}/cqt_{round(dur, 2)}_{i}.jpg", | |
| bbox_inches="tight", | |
| pad_inches=0.0, | |
| ) | |
| plt.close() | |
| def mp3_to_chroma(audio_path: str, width=11.4): | |
| y, sr = librosa.load(audio_path) | |
| chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr) | |
| log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max) | |
| dur = librosa.get_duration(y=y, sr=sr) | |
| total_frames = log_chroma_spec.shape[1] | |
| step = int(width * total_frames / dur) | |
| count = int(total_frames / step) | |
| begin = int(0.5 * (total_frames - count * step)) | |
| end = begin + step * count | |
| for i in range(begin, end, step): | |
| librosa.display.specshow(log_chroma_spec[:, i : i + step]) | |
| plt.axis("off") | |
| plt.savefig( | |
| f"{CACHE_DIR}/chroma_{round(dur, 2)}_{i}.jpg", | |
| bbox_inches="tight", | |
| pad_inches=0.0, | |
| ) | |
| plt.close() | |
| def embed_img(img_path, input_size=224): | |
| transform = transforms.Compose( | |
| [ | |
| transforms.Resize([input_size, input_size]), | |
| transforms.ToTensor(), | |
| transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), | |
| ] | |
| ) | |
| img = Image.open(img_path).convert("RGB") | |
| return transform(img).unsqueeze(0) | |
| def infer(mp3_path, log_name: str, folder_path=CACHE_DIR): | |
| status = "Success" | |
| filename = result = None | |
| try: | |
| if os.path.exists(folder_path): | |
| shutil.rmtree(folder_path) | |
| if not mp3_path: | |
| raise ValueError("请输入音频!") | |
| spec = log_name.split("_")[-1] | |
| os.makedirs(folder_path, exist_ok=True) | |
| network = EvalNet(log_name) | |
| eval("mp3_to_%s" % spec)(mp3_path) | |
| outputs = [] | |
| all_files = os.listdir(folder_path) | |
| for file_name in all_files: | |
| if file_name.lower().endswith(".jpg"): | |
| file_path = os.path.join(folder_path, file_name) | |
| input = embed_img(file_path) | |
| output: torch.Tensor = network.model(input) | |
| pred_id = torch.max(output.data, 1)[1] | |
| outputs.append(int(pred_id)) | |
| max_count_item = most_common_element(outputs) | |
| filename = os.path.basename(mp3_path) | |
| result = TRANSLATE[CLASSES[max_count_item]] | |
| except Exception as e: | |
| status = f"{e}" | |
| return status, filename, result | |
| if __name__ == "__main__": | |
| warnings.filterwarnings("ignore") | |
| ffmpeg = "ffmpeg-release-amd64-static" | |
| if sys.platform.startswith("linux"): | |
| if not os.path.exists(f"./{ffmpeg}.tar.xz"): | |
| download( | |
| f"https://www.modelscope.cn/studio/ccmusic-database/music_genre/resolve/master/{ffmpeg}.tar.xz" | |
| ) | |
| folder_path = f"{os.getcwd()}/{ffmpeg}" | |
| if not os.path.exists(folder_path): | |
| subprocess.call(f"tar -xvf {ffmpeg}.tar.xz", shell=True) | |
| os.environ["PATH"] = f"{folder_path}:{os.environ.get('PATH', '')}" | |
| models = get_modelist(assign_model="vgg19_bn_cqt") | |
| examples = [] | |
| example_mp3s = find_mp3_files() | |
| for mp3 in example_mp3s: | |
| examples.append([mp3, models[0]]) | |
| with gr.Blocks() as demo: | |
| gr.Interface( | |
| fn=infer, | |
| inputs=[ | |
| gr.Audio(label=_L("上传 MP3 音频"), type="filepath"), | |
| gr.Dropdown(choices=models, label=_L("选择模型"), value=models[0]), | |
| ], | |
| outputs=[ | |
| gr.Textbox(label=_L("状态栏"), show_copy_button=True), | |
| gr.Textbox(label=_L("音频文件名"), show_copy_button=True), | |
| gr.Textbox(label=_L("流派识别"), show_copy_button=True), | |
| ], | |
| examples=examples, | |
| cache_examples=False, | |
| allow_flagging="never", | |
| title=_L("建议录音时长保持在 15s 以内, 过长会影响识别效率"), | |
| ) | |
| gr.Markdown( | |
| f"# {_L('引用')}" | |
| + """ | |
| ```bibtex | |
| @dataset{zhaorui_liu_2021_5676893, | |
| author = {Zhaorui Liu and Zijin Li}, | |
| title = {Music Data Sharing Platform for Computational Musicology Research (CCMUSIC DATASET)}, | |
| month = nov, | |
| year = 2021, | |
| publisher = {Zenodo}, | |
| version = {1.1}, | |
| doi = {10.5281/zenodo.5676893}, | |
| url = {https://doi.org/10.5281/zenodo.5676893} | |
| } | |
| ```""" | |
| ) | |
| demo.launch() | |