Spaces:
Running
Running
import os | |
import time | |
import torch | |
import zipfile | |
import requests | |
from tqdm import tqdm | |
DOMAIN = 'https://www.modelscope.cn/api/v1/models/ccmusic/chest_falsetto/repo?Revision=master&FilePath=' | |
def create_dir(dir): | |
if not os.path.exists(dir): | |
os.mkdir(dir) | |
def url_download(url: str, fname: str, max_retries=3): | |
retry_count = 0 | |
while retry_count < max_retries: | |
try: | |
print(f"Downloading: {url}") | |
resp = requests.get(url, stream=True) | |
# Check the response status code (raise an exception if it's not in the range 200-299) | |
resp.raise_for_status() | |
total = int(resp.headers.get('content-length', 0)) | |
# create_dir(data_dir) | |
with open(fname, 'wb') as file, tqdm( | |
desc=fname, | |
total=total, | |
unit='iB', | |
unit_scale=True, | |
unit_divisor=1024, | |
) as bar: | |
for data in resp.iter_content(chunk_size=1024): | |
size = file.write(data) | |
bar.update(size) | |
print(f'Download of {url} completed.') | |
return | |
except requests.exceptions.HTTPError as errh: | |
print(f"HTTP error occurred: {errh}") | |
retry_count += 1 | |
continue | |
except requests.exceptions.ConnectionError as errc: | |
print(f"Connection error occurred: {errc}") | |
retry_count += 1 | |
continue | |
except requests.exceptions.Timeout as errt: | |
print(f"Timeout error occurred: {errt}") | |
retry_count += 1 | |
continue | |
except Exception as err: | |
print(f"Other error occurred: {err}") | |
retry_count += 1 | |
continue | |
else: | |
print( | |
"Error: the operation could not be completed after {max_retries} retries." | |
) | |
exit() | |
def unzip_file(zip_src, dst_dir): | |
r = zipfile.is_zipfile(zip_src) | |
if r: | |
fz = zipfile.ZipFile(zip_src, 'r') | |
for file in fz.namelist(): | |
fz.extract(file, dst_dir) | |
else: | |
print('This is not zip') | |
def time_stamp(timestamp=None): | |
if timestamp != None: | |
return timestamp.strftime("%Y-%m-%d %H:%M:%S") | |
return time.strftime("%Y-%m-%d_%H-%M-%S", time.localtime(time.time())) | |
def toCUDA(x): | |
if hasattr(x, 'cuda'): | |
if torch.cuda.is_available(): | |
return x.cuda() | |
return x | |
def find_wav_files(folder_path='./examples'): | |
wav_files = [] | |
for root, _, files in os.walk(folder_path): | |
for file in files: | |
if file.endswith(".wav"): | |
file_path = os.path.join(root, file) | |
wav_files.append(file_path) | |
return wav_files | |