bel_canto / app.py
admin
sync
82336dd
raw
history blame
6.8 kB
import os
import torch
import random
import shutil
import librosa
import warnings
import numpy as np
import gradio as gr
import librosa.display
import matplotlib.pyplot as plt
from utils import get_modelist, find_wav_files, embed_img, TEMP_DIR
from collections import Counter
from model import EvalNet
TRANSLATE = {
"m_bel": "男声美声唱法 (Bel Canto, Male)",
"f_bel": "女声美声唱法 (Bel Canto, Female)",
"m_folk": "男声民族唱法 (Folk Singing, Male)",
"f_folk": "女声民族唱法 (Folk Singing, Female)",
}
CLASSES = list(TRANSLATE.keys())
SAMPLE_RATE = 22050
def wav2mel(audio_path: str, width=1.6, topdb=40):
os.makedirs(TEMP_DIR, exist_ok=True)
try:
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
non_silents = librosa.effects.split(y, top_db=topdb)
non_silent = np.concatenate([y[start:end] for start, end in non_silents])
mel_spec = librosa.feature.melspectrogram(y=non_silent, sr=sr)
log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
dur = librosa.get_duration(y=non_silent, sr=sr)
total_frames = log_mel_spec.shape[1]
step = int(width * total_frames / dur)
count = int(total_frames / step)
begin = int(0.5 * (total_frames - count * step))
end = begin + step * count
for i in range(begin, end, step):
librosa.display.specshow(log_mel_spec[:, i : i + step])
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/mel_{round(dur, 2)}_{i}.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
except Exception as e:
print(f"Error converting {audio_path} : {e}")
def wav2cqt(audio_path: str, width=1.6, topdb=40):
os.makedirs(TEMP_DIR, exist_ok=True)
try:
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
non_silents = librosa.effects.split(y, top_db=topdb)
non_silent = np.concatenate([y[start:end] for start, end in non_silents])
cqt_spec = librosa.cqt(y=non_silent, sr=sr)
log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
dur = librosa.get_duration(y=non_silent, sr=sr)
total_frames = log_cqt_spec.shape[1]
step = int(width * total_frames / dur)
count = int(total_frames / step)
begin = int(0.5 * (total_frames - count * step))
end = begin + step * count
for i in range(begin, end, step):
librosa.display.specshow(log_cqt_spec[:, i : i + step])
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/cqt_{round(dur, 2)}_{i}.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
except Exception as e:
print(f"Error converting {audio_path} : {e}")
def wav2chroma(audio_path: str, width=1.6, topdb=40):
os.makedirs(TEMP_DIR, exist_ok=True)
try:
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
non_silents = librosa.effects.split(y, top_db=topdb)
non_silent = np.concatenate([y[start:end] for start, end in non_silents])
chroma_spec = librosa.feature.chroma_stft(y=non_silent, sr=sr)
log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
dur = librosa.get_duration(y=non_silent, sr=sr)
total_frames = log_chroma_spec.shape[1]
step = int(width * total_frames / dur)
count = int(total_frames / step)
begin = int(0.5 * (total_frames - count * step))
end = begin + step * count
for i in range(begin, end, step):
librosa.display.specshow(log_chroma_spec[:, i : i + step])
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/chroma_{round(dur, 2)}_{i}.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
except Exception as e:
print(f"Error converting {audio_path} : {e}")
def most_common_element(input_list: list):
counter = Counter(input_list)
mce, _ = counter.most_common(1)[0]
return mce
def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
if os.path.exists(folder_path):
shutil.rmtree(folder_path)
if not wav_path:
return None, "请输入音频 Please input an audio!"
try:
model = EvalNet(log_name, len(TRANSLATE)).model
except Exception as e:
return None, f"{e}"
spec = log_name.split("_")[-3]
eval("wav2%s" % spec)(wav_path)
outputs = []
all_files = os.listdir(folder_path)
for file_name in all_files:
if file_name.lower().endswith(".jpg"):
file_path = os.path.join(folder_path, file_name)
input = embed_img(file_path)
output: torch.Tensor = model(input)
pred_id = torch.max(output.data, 1)[1]
outputs.append(int(pred_id))
max_count_item = most_common_element(outputs)
shutil.rmtree(folder_path)
return os.path.basename(wav_path), TRANSLATE[CLASSES[max_count_item]]
if __name__ == "__main__":
warnings.filterwarnings("ignore")
models = get_modelist()
examples = []
example_wavs = find_wav_files()
model_num = len(models)
for wav in example_wavs:
examples.append([wav, models[random.randint(0, model_num - 1)]])
with gr.Blocks() as demo:
gr.Interface(
fn=infer,
inputs=[
gr.Audio(label="上传录音 Upload a recording", type="filepath"),
gr.Dropdown(
choices=models, label="选择模型 Select a model", value=models[0]
),
],
outputs=[
gr.Textbox(label="音频文件名 Audio filename", show_copy_button=True),
gr.Textbox(
label="唱法识别 Singing method recognition", show_copy_button=True
),
],
examples=examples,
cache_examples=False,
allow_flagging="never",
title="建议录音时长保持在 5s 左右, 过长会影响识别效率<br>It is recommended to keep the recording length around 5s, too long will affect the recognition efficiency.",
)
gr.Markdown(
"""
# 引用 Cite
```bibtex
@dataset{zhaorui_liu_2021_5676893,
author = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han},
title = {CCMusic: an Open and Diverse Database for Chinese and General Music Information Retrieval Research},
month = {mar},
year = {2024},
publisher = {HuggingFace},
version = {1.2},
url = {https://huggingface.co/ccmusic-database}
}
```"""
)
demo.launch()