cbensimon's picture
cbensimon HF staff
Update app.py
bb732fa
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
print(f"{os.getenv('HUGGING_FACE_HUB_TOKEN')=}")
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """\
# Llama-2 13B Chat
This Space demonstrates model [Llama-2-13b-chat](https://huggingface.co/meta-llama/Llama-2-13b-chat) by Meta, a Llama 2 model with 13B parameters fine-tuned for chat instructions. Feel free to play with it, or duplicate to run generations without a queue! If you want to run your own service, you can also [deploy the model on Inference Endpoints](https://huggingface.co/inference-endpoints).
๐Ÿ”Ž For more details about the Llama 2 family of models and how to use them with `transformers`, take a look [at our blog post](https://huggingface.co/blog/llama2).
๐Ÿ”จ Looking for an even more powerful model? Check out the large [**70B** model demo](https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI).
๐Ÿ‡ For a smaller model that you can run on many GPUs, check our [7B model demo](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat).
"""
LICENSE = """
<p/>
---
As a derivate work of [Llama-2-13b-chat](https://huggingface.co/meta-llama/Llama-2-13b-chat) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat/blob/main/USE_POLICY.md).
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU ๐Ÿฅถ This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model_id = "meta-llama/Llama-2-13b-chat-hf"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = False
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Textbox(label="System prompt", lines=6),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["Hello there! How are you doing?"],
["Can you explain briefly to me what is the Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["How many hours does it take a man to eat a Helicopter?"],
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface.render()
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue(max_size=20).launch()