|
import torch |
|
from torch.optim import Optimizer |
|
|
|
|
|
class Nadam(Optimizer): |
|
"""Implements Nadam algorithm (a variant of Adam based on Nesterov momentum). |
|
|
|
It has been proposed in `Incorporating Nesterov Momentum into Adam`__. |
|
|
|
Arguments: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups |
|
lr (float, optional): learning rate (default: 2e-3) |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its square |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability (default: 1e-8) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
schedule_decay (float, optional): momentum schedule decay (default: 4e-3) |
|
|
|
__ http://cs229.stanford.edu/proj2015/054_report.pdf |
|
__ http://www.cs.toronto.edu/~fritz/absps/momentum.pdf |
|
|
|
Originally taken from: https://github.com/pytorch/pytorch/pull/1408 |
|
NOTE: Has potential issues but does work well on some problems. |
|
""" |
|
|
|
def __init__(self, params, lr=2e-3, betas=(0.9, 0.999), eps=1e-8, |
|
weight_decay=0, schedule_decay=4e-3): |
|
defaults = dict(lr=lr, betas=betas, eps=eps, |
|
weight_decay=weight_decay, schedule_decay=schedule_decay) |
|
super(Nadam, self).__init__(params, defaults) |
|
|
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
|
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad.data |
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state['step'] = 0 |
|
state['m_schedule'] = 1. |
|
state['exp_avg'] = grad.new().resize_as_(grad).zero_() |
|
state['exp_avg_sq'] = grad.new().resize_as_(grad).zero_() |
|
|
|
|
|
m_schedule = state['m_schedule'] |
|
schedule_decay = group['schedule_decay'] |
|
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] |
|
beta1, beta2 = group['betas'] |
|
eps = group['eps'] |
|
state['step'] += 1 |
|
t = state['step'] |
|
|
|
if group['weight_decay'] != 0: |
|
grad = grad.add(group['weight_decay'], p.data) |
|
|
|
momentum_cache_t = beta1 * \ |
|
(1. - 0.5 * (0.96 ** (t * schedule_decay))) |
|
momentum_cache_t_1 = beta1 * \ |
|
(1. - 0.5 * (0.96 ** ((t + 1) * schedule_decay))) |
|
m_schedule_new = m_schedule * momentum_cache_t |
|
m_schedule_next = m_schedule * momentum_cache_t * momentum_cache_t_1 |
|
state['m_schedule'] = m_schedule_new |
|
|
|
|
|
exp_avg.mul_(beta1).add_(1. - beta1, grad) |
|
exp_avg_sq.mul_(beta2).addcmul_(1. - beta2, grad, grad) |
|
exp_avg_sq_prime = exp_avg_sq / (1. - beta2 ** t) |
|
denom = exp_avg_sq_prime.sqrt_().add_(eps) |
|
|
|
p.data.addcdiv_(-group['lr'] * (1. - momentum_cache_t) / (1. - m_schedule_new), grad, denom) |
|
p.data.addcdiv_(-group['lr'] * momentum_cache_t_1 / (1. - m_schedule_next), exp_avg, denom) |
|
|
|
return loss |
|
|