|
|
|
|
|
|
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch |
|
import numpy as np |
|
|
|
|
|
class GeodesicLoss(nn.Module): |
|
def __init__(self): |
|
super(GeodesicLoss, self).__init__() |
|
|
|
def compute_geodesic_distance(self, m1, m2): |
|
""" Compute the geodesic distance between two rotation matrices. |
|
|
|
Args: |
|
m1, m2: Two rotation matrices with the shape (batch x 3 x 3). |
|
|
|
Returns: |
|
The minimal angular difference between two rotation matrices in radian form [0, pi]. |
|
""" |
|
m1 = m1.reshape(-1, 3, 3) |
|
m2 = m2.reshape(-1, 3, 3) |
|
batch = m1.shape[0] |
|
m = torch.bmm(m1, m2.transpose(1, 2)) |
|
|
|
cos = (m[:, 0, 0] + m[:, 1, 1] + m[:, 2, 2] - 1) / 2 |
|
cos = torch.clamp(cos, min=-1 + 1E-6, max=1-1E-6) |
|
|
|
theta = torch.acos(cos) |
|
|
|
return theta |
|
|
|
def __call__(self, m1, m2, reduction='mean'): |
|
loss = self.compute_geodesic_distance(m1, m2) |
|
|
|
if reduction == 'mean': |
|
return loss.mean() |
|
elif reduction == 'none': |
|
return loss |
|
else: |
|
raise RuntimeError(f'unsupported reduction: {reduction}') |
|
|
|
|
|
class BCE_Loss(nn.Module): |
|
def __init__(self, args=None): |
|
super(BCE_Loss, self).__init__() |
|
|
|
def forward(self, fake_outputs, real_target): |
|
final_loss = F.cross_entropy(fake_outputs, real_target, reduce="mean") |
|
return final_loss |
|
|
|
class weight_Loss(nn.Module): |
|
def __init__(self, args=None): |
|
super(weight_Loss, self).__init__() |
|
def forward(self, weight_f): |
|
weight_loss_div = torch.mean(weight_f[:, :, 0]*weight_f[:, :, 1]) |
|
weight_loss_gap = torch.mean(-torch.log(torch.max(weight_f[:, :, 0], dim=1)[0] - torch.min(weight_f[:, :, 0], dim=1)[0])) |
|
return weight_loss_div, weight_loss_gap |
|
|
|
|
|
class HuberLoss(nn.Module): |
|
def __init__(self, beta=0.1, reduction="mean"): |
|
super(HuberLoss, self).__init__() |
|
self.beta = beta |
|
self.reduction = reduction |
|
|
|
def forward(self, outputs, targets): |
|
final_loss = F.smooth_l1_loss(outputs / self.beta, targets / self.beta, reduction=self.reduction) * self.beta |
|
return final_loss |
|
|
|
|
|
class KLDLoss(nn.Module): |
|
def __init__(self, beta=0.1): |
|
super(KLDLoss, self).__init__() |
|
self.beta = beta |
|
|
|
def forward(self, outputs, targets): |
|
final_loss = F.smooth_l1_loss((outputs / self.beta, targets / self.beta) * self.beta) |
|
return final_loss |
|
|
|
|
|
class REGLoss(nn.Module): |
|
def __init__(self, beta=0.1): |
|
super(REGLoss, self).__init__() |
|
self.beta = beta |
|
|
|
def forward(self, outputs, targets): |
|
final_loss = F.smooth_l1_loss((outputs / self.beta, targets / self.beta) * self.beta) |
|
return final_loss |
|
|
|
|
|
class L2Loss(nn.Module): |
|
def __init__(self): |
|
super(L2Loss, self).__init__() |
|
|
|
def forward(self, outputs, targets): |
|
final_loss = F.l2_loss(outputs, targets) |
|
return final_loss |
|
|
|
LOSS_FUNC_LUT = { |
|
"bce_loss": BCE_Loss, |
|
"l2_loss": L2Loss, |
|
"huber_loss": HuberLoss, |
|
"kl_loss": KLDLoss, |
|
"id_loss": REGLoss, |
|
"GeodesicLoss": GeodesicLoss, |
|
"weight_Loss": weight_Loss, |
|
} |
|
|
|
|
|
def get_loss_func(loss_name, **kwargs): |
|
loss_func_class = LOSS_FUNC_LUT.get(loss_name) |
|
loss_func = loss_func_class(**kwargs) |
|
return loss_func |
|
|
|
|
|
|