|
import os |
|
import logging |
|
import random |
|
import h5py |
|
import numpy as np |
|
import pickle |
|
import math |
|
import numbers |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.optim.lr_scheduler import StepLR |
|
from torch.distributions import Normal |
|
|
|
|
|
def _index_from_letter(letter: str) -> int: |
|
if letter == "X": |
|
return 0 |
|
if letter == "Y": |
|
return 1 |
|
if letter == "Z": |
|
return 2 |
|
raise ValueError("letter must be either X, Y or Z.") |
|
|
|
|
|
def _angle_from_tan( |
|
axis: str, other_axis: str, data, horizontal: bool, tait_bryan: bool |
|
) -> torch.Tensor: |
|
""" |
|
Extract the first or third Euler angle from the two members of |
|
the matrix which are positive constant times its sine and cosine. |
|
|
|
Args: |
|
axis: Axis label "X" or "Y or "Z" for the angle we are finding. |
|
other_axis: Axis label "X" or "Y or "Z" for the middle axis in the |
|
convention. |
|
data: Rotation matrices as tensor of shape (..., 3, 3). |
|
horizontal: Whether we are looking for the angle for the third axis, |
|
which means the relevant entries are in the same row of the |
|
rotation matrix. If not, they are in the same column. |
|
tait_bryan: Whether the first and third axes in the convention differ. |
|
|
|
Returns: |
|
Euler Angles in radians for each matrix in data as a tensor |
|
of shape (...). |
|
""" |
|
|
|
i1, i2 = {"X": (2, 1), "Y": (0, 2), "Z": (1, 0)}[axis] |
|
if horizontal: |
|
i2, i1 = i1, i2 |
|
even = (axis + other_axis) in ["XY", "YZ", "ZX"] |
|
if horizontal == even: |
|
return torch.atan2(data[..., i1], data[..., i2]) |
|
if tait_bryan: |
|
return torch.atan2(-data[..., i2], data[..., i1]) |
|
return torch.atan2(data[..., i2], -data[..., i1]) |
|
|
|
|
|
def _axis_angle_rotation(axis: str, angle: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Return the rotation matrices for one of the rotations about an axis |
|
of which Euler angles describe, for each value of the angle given. |
|
|
|
Args: |
|
axis: Axis label "X" or "Y or "Z". |
|
angle: any shape tensor of Euler angles in radians |
|
|
|
Returns: |
|
Rotation matrices as tensor of shape (..., 3, 3). |
|
""" |
|
|
|
cos = torch.cos(angle) |
|
sin = torch.sin(angle) |
|
one = torch.ones_like(angle) |
|
zero = torch.zeros_like(angle) |
|
|
|
if axis == "X": |
|
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos) |
|
elif axis == "Y": |
|
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos) |
|
elif axis == "Z": |
|
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one) |
|
else: |
|
raise ValueError("letter must be either X, Y or Z.") |
|
|
|
return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3)) |
|
|
|
def euler_angles_to_matrix(euler_angles: torch.Tensor, convention: str) -> torch.Tensor: |
|
""" |
|
Convert rotations given as Euler angles in radians to rotation matrices. |
|
|
|
Args: |
|
euler_angles: Euler angles in radians as tensor of shape (..., 3). |
|
convention: Convention string of three uppercase letters from |
|
{"X", "Y", and "Z"}. |
|
|
|
Returns: |
|
Rotation matrices as tensor of shape (..., 3, 3). |
|
""" |
|
if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3: |
|
raise ValueError("Invalid input euler angles.") |
|
if len(convention) != 3: |
|
raise ValueError("Convention must have 3 letters.") |
|
if convention[1] in (convention[0], convention[2]): |
|
raise ValueError(f"Invalid convention {convention}.") |
|
for letter in convention: |
|
if letter not in ("X", "Y", "Z"): |
|
raise ValueError(f"Invalid letter {letter} in convention string.") |
|
matrices = [ |
|
_axis_angle_rotation(c, e) |
|
for c, e in zip(convention, torch.unbind(euler_angles, -1)) |
|
] |
|
|
|
return torch.matmul(torch.matmul(matrices[0], matrices[1]), matrices[2]) |
|
|
|
|
|
def matrix_to_rotation_6d(matrix: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Converts rotation matrices to 6D rotation representation by Zhou et al. [1] |
|
by dropping the last row. Note that 6D representation is not unique. |
|
Args: |
|
matrix: batch of rotation matrices of size (*, 3, 3) |
|
Returns: |
|
6D rotation representation, of size (*, 6) |
|
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H. |
|
On the Continuity of Rotation Representations in Neural Networks. |
|
IEEE Conference on Computer Vision and Pattern Recognition, 2019. |
|
Retrieved from http://arxiv.org/abs/1812.07035 |
|
""" |
|
return matrix[..., :2, :].clone().reshape(*matrix.size()[:-2], 6) |
|
|
|
|
|
def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Args: |
|
d6: 6D rotation representation, of size (*, 6) |
|
Returns: |
|
batch of rotation matrices of size (*, 3, 3) |
|
""" |
|
a1, a2 = d6[..., :3], d6[..., 3:] |
|
b1 = F.normalize(a1, dim=-1) |
|
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1 |
|
b2 = F.normalize(b2, dim=-1) |
|
b3 = torch.cross(b1, b2, dim=-1) |
|
return torch.stack((b1, b2, b3), dim=-2) |
|
|
|
|
|
def matrix_to_euler_angles(matrix: torch.Tensor, convention: str) -> torch.Tensor: |
|
""" |
|
Convert rotations given as rotation matrices to Euler angles in radians. |
|
|
|
Args: |
|
matrix: Rotation matrices as tensor of shape (..., 3, 3). |
|
convention: Convention string of three uppercase letters. |
|
|
|
Returns: |
|
Euler angles in radians as tensor of shape (..., 3). |
|
""" |
|
if len(convention) != 3: |
|
raise ValueError("Convention must have 3 letters.") |
|
if convention[1] in (convention[0], convention[2]): |
|
raise ValueError(f"Invalid convention {convention}.") |
|
for letter in convention: |
|
if letter not in ("X", "Y", "Z"): |
|
raise ValueError(f"Invalid letter {letter} in convention string.") |
|
if matrix.size(-1) != 3 or matrix.size(-2) != 3: |
|
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.") |
|
i0 = _index_from_letter(convention[0]) |
|
i2 = _index_from_letter(convention[2]) |
|
tait_bryan = i0 != i2 |
|
if tait_bryan: |
|
central_angle = torch.asin( |
|
matrix[..., i0, i2] * (-1.0 if i0 - i2 in [-1, 2] else 1.0) |
|
) |
|
else: |
|
central_angle = torch.acos(matrix[..., i0, i0]) |
|
|
|
o = ( |
|
_angle_from_tan( |
|
convention[0], convention[1], matrix[..., i2], False, tait_bryan |
|
), |
|
central_angle, |
|
_angle_from_tan( |
|
convention[2], convention[1], matrix[..., i0, :], True, tait_bryan |
|
), |
|
) |
|
return torch.stack(o, -1) |
|
|
|
|
|
def so3_relative_angle(m1, m2): |
|
m1 = m1.reshape(-1, 3, 3) |
|
m2 = m2.reshape(-1, 3, 3) |
|
|
|
m = torch.bmm(m1, m2.transpose(1, 2)) |
|
|
|
cos = (m[:, 0, 0] + m[:, 1, 1] + m[:, 2, 2] - 1) / 2 |
|
|
|
cos = torch.clamp(cos, min=-1 + 1E-6, max=1-1E-6) |
|
|
|
theta = torch.acos(cos) |
|
|
|
return torch.mean(theta) |
|
|