EMAGE / utils /data_transfer.py
H-Liu1997's picture
Upload folder using huggingface_hub
2d47d90 verified
raw
history blame
6.96 kB
import os
import logging
import random
import h5py
import numpy as np
import pickle
import math
import numbers
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim.lr_scheduler import StepLR
from torch.distributions import Normal
def _index_from_letter(letter: str) -> int:
if letter == "X":
return 0
if letter == "Y":
return 1
if letter == "Z":
return 2
raise ValueError("letter must be either X, Y or Z.")
def _angle_from_tan(
axis: str, other_axis: str, data, horizontal: bool, tait_bryan: bool
) -> torch.Tensor:
"""
Extract the first or third Euler angle from the two members of
the matrix which are positive constant times its sine and cosine.
Args:
axis: Axis label "X" or "Y or "Z" for the angle we are finding.
other_axis: Axis label "X" or "Y or "Z" for the middle axis in the
convention.
data: Rotation matrices as tensor of shape (..., 3, 3).
horizontal: Whether we are looking for the angle for the third axis,
which means the relevant entries are in the same row of the
rotation matrix. If not, they are in the same column.
tait_bryan: Whether the first and third axes in the convention differ.
Returns:
Euler Angles in radians for each matrix in data as a tensor
of shape (...).
"""
i1, i2 = {"X": (2, 1), "Y": (0, 2), "Z": (1, 0)}[axis]
if horizontal:
i2, i1 = i1, i2
even = (axis + other_axis) in ["XY", "YZ", "ZX"]
if horizontal == even:
return torch.atan2(data[..., i1], data[..., i2])
if tait_bryan:
return torch.atan2(-data[..., i2], data[..., i1])
return torch.atan2(data[..., i2], -data[..., i1])
def _axis_angle_rotation(axis: str, angle: torch.Tensor) -> torch.Tensor:
"""
Return the rotation matrices for one of the rotations about an axis
of which Euler angles describe, for each value of the angle given.
Args:
axis: Axis label "X" or "Y or "Z".
angle: any shape tensor of Euler angles in radians
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
cos = torch.cos(angle)
sin = torch.sin(angle)
one = torch.ones_like(angle)
zero = torch.zeros_like(angle)
if axis == "X":
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
elif axis == "Y":
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
elif axis == "Z":
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one)
else:
raise ValueError("letter must be either X, Y or Z.")
return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3))
def euler_angles_to_matrix(euler_angles: torch.Tensor, convention: str) -> torch.Tensor:
"""
Convert rotations given as Euler angles in radians to rotation matrices.
Args:
euler_angles: Euler angles in radians as tensor of shape (..., 3).
convention: Convention string of three uppercase letters from
{"X", "Y", and "Z"}.
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3:
raise ValueError("Invalid input euler angles.")
if len(convention) != 3:
raise ValueError("Convention must have 3 letters.")
if convention[1] in (convention[0], convention[2]):
raise ValueError(f"Invalid convention {convention}.")
for letter in convention:
if letter not in ("X", "Y", "Z"):
raise ValueError(f"Invalid letter {letter} in convention string.")
matrices = [
_axis_angle_rotation(c, e)
for c, e in zip(convention, torch.unbind(euler_angles, -1))
]
# return functools.reduce(torch.matmul, matrices)
return torch.matmul(torch.matmul(matrices[0], matrices[1]), matrices[2])
def matrix_to_rotation_6d(matrix: torch.Tensor) -> torch.Tensor:
"""
Converts rotation matrices to 6D rotation representation by Zhou et al. [1]
by dropping the last row. Note that 6D representation is not unique.
Args:
matrix: batch of rotation matrices of size (*, 3, 3)
Returns:
6D rotation representation, of size (*, 6)
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
On the Continuity of Rotation Representations in Neural Networks.
IEEE Conference on Computer Vision and Pattern Recognition, 2019.
Retrieved from http://arxiv.org/abs/1812.07035
"""
return matrix[..., :2, :].clone().reshape(*matrix.size()[:-2], 6)
def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor:
"""
Args:
d6: 6D rotation representation, of size (*, 6)
Returns:
batch of rotation matrices of size (*, 3, 3)
"""
a1, a2 = d6[..., :3], d6[..., 3:]
b1 = F.normalize(a1, dim=-1)
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1
b2 = F.normalize(b2, dim=-1)
b3 = torch.cross(b1, b2, dim=-1)
return torch.stack((b1, b2, b3), dim=-2)
def matrix_to_euler_angles(matrix: torch.Tensor, convention: str) -> torch.Tensor:
"""
Convert rotations given as rotation matrices to Euler angles in radians.
Args:
matrix: Rotation matrices as tensor of shape (..., 3, 3).
convention: Convention string of three uppercase letters.
Returns:
Euler angles in radians as tensor of shape (..., 3).
"""
if len(convention) != 3:
raise ValueError("Convention must have 3 letters.")
if convention[1] in (convention[0], convention[2]):
raise ValueError(f"Invalid convention {convention}.")
for letter in convention:
if letter not in ("X", "Y", "Z"):
raise ValueError(f"Invalid letter {letter} in convention string.")
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")
i0 = _index_from_letter(convention[0])
i2 = _index_from_letter(convention[2])
tait_bryan = i0 != i2
if tait_bryan:
central_angle = torch.asin(
matrix[..., i0, i2] * (-1.0 if i0 - i2 in [-1, 2] else 1.0)
)
else:
central_angle = torch.acos(matrix[..., i0, i0])
o = (
_angle_from_tan(
convention[0], convention[1], matrix[..., i2], False, tait_bryan
),
central_angle,
_angle_from_tan(
convention[2], convention[1], matrix[..., i0, :], True, tait_bryan
),
)
return torch.stack(o, -1)
def so3_relative_angle(m1, m2):
m1 = m1.reshape(-1, 3, 3)
m2 = m2.reshape(-1, 3, 3)
#print(m2.shape)
m = torch.bmm(m1, m2.transpose(1, 2)) # batch*3*3
#print(m.shape)
cos = (m[:, 0, 0] + m[:, 1, 1] + m[:, 2, 2] - 1) / 2
#print(cos.shape)
cos = torch.clamp(cos, min=-1 + 1E-6, max=1-1E-6)
#print(cos.shape)
theta = torch.acos(cos)
#print(theta.shape)
return torch.mean(theta)