|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import numpy as np |
|
import copy |
|
import math |
|
from transformers import Wav2Vec2Model,Wav2Vec2Config |
|
from transformers.modeling_outputs import BaseModelOutput |
|
from typing import Optional, Tuple |
|
_CONFIG_FOR_DOC = "Wav2Vec2Config" |
|
|
|
|
|
|
|
def _compute_mask_indices( |
|
shape: Tuple[int, int], |
|
mask_prob: float, |
|
mask_length: int, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
min_masks: int = 0, |
|
) -> np.ndarray: |
|
bsz, all_sz = shape |
|
mask = np.full((bsz, all_sz), False) |
|
|
|
all_num_mask = int( |
|
mask_prob * all_sz / float(mask_length) |
|
+ np.random.rand() |
|
) |
|
all_num_mask = max(min_masks, all_num_mask) |
|
mask_idcs = [] |
|
padding_mask = attention_mask.ne(1) if attention_mask is not None else None |
|
for i in range(bsz): |
|
if padding_mask is not None: |
|
sz = all_sz - padding_mask[i].long().sum().item() |
|
num_mask = int( |
|
mask_prob * sz / float(mask_length) |
|
+ np.random.rand() |
|
) |
|
num_mask = max(min_masks, num_mask) |
|
else: |
|
sz = all_sz |
|
num_mask = all_num_mask |
|
|
|
lengths = np.full(num_mask, mask_length) |
|
|
|
if sum(lengths) == 0: |
|
lengths[0] = min(mask_length, sz - 1) |
|
|
|
min_len = min(lengths) |
|
if sz - min_len <= num_mask: |
|
min_len = sz - num_mask - 1 |
|
|
|
mask_idc = np.random.choice(sz - min_len, num_mask, replace=False) |
|
mask_idc = np.asarray([mask_idc[j] + offset for j in range(len(mask_idc)) for offset in range(lengths[j])]) |
|
mask_idcs.append(np.unique(mask_idc[mask_idc < sz])) |
|
|
|
min_len = min([len(m) for m in mask_idcs]) |
|
for i, mask_idc in enumerate(mask_idcs): |
|
if len(mask_idc) > min_len: |
|
mask_idc = np.random.choice(mask_idc, min_len, replace=False) |
|
mask[i, mask_idc] = True |
|
return mask |
|
|
|
|
|
def linear_interpolation(features, input_fps, output_fps, output_len=None): |
|
features = features.transpose(1, 2) |
|
seq_len = features.shape[2] / float(input_fps) |
|
if output_len is None: |
|
output_len = int(seq_len * output_fps) |
|
output_features = F.interpolate(features,size=output_len,align_corners=True,mode='linear') |
|
return output_features.transpose(1, 2) |
|
|
|
class Wav2Vec2Model(Wav2Vec2Model): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.args = config |
|
self.args.audio_fps = 15 |
|
|
|
def forward( |
|
self, |
|
input_values, |
|
dataset="beat", |
|
attention_mask=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
frame_num=None |
|
): |
|
|
|
self.config.output_attentions = True |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
hidden_states = self.feature_extractor(input_values) |
|
hidden_states = hidden_states.transpose(1, 2) |
|
|
|
if dataset == "beat": |
|
hidden_states = linear_interpolation(hidden_states, 49, self.args.audio_fps, output_len=frame_num) |
|
|
|
if attention_mask is not None: |
|
output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)) |
|
attention_mask = torch.zeros( |
|
hidden_states.shape[:2], dtype=hidden_states.dtype, device=hidden_states.device |
|
) |
|
attention_mask[ |
|
(torch.arange(attention_mask.shape[0], device=hidden_states.device), output_lengths - 1) |
|
] = 1 |
|
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() |
|
|
|
hidden_states = self.feature_projection(hidden_states)[0] |
|
|
|
if self.config.apply_spec_augment and self.training: |
|
batch_size, sequence_length, hidden_size = hidden_states.size() |
|
if self.config.mask_time_prob > 0: |
|
mask_time_indices = _compute_mask_indices( |
|
(batch_size, sequence_length), |
|
self.config.mask_time_prob, |
|
self.config.mask_time_length, |
|
attention_mask=attention_mask, |
|
min_masks=2, |
|
) |
|
hidden_states[torch.from_numpy(mask_time_indices)] = self.masked_spec_embed.to(hidden_states.dtype) |
|
if self.config.mask_feature_prob > 0: |
|
mask_feature_indices = _compute_mask_indices( |
|
(batch_size, hidden_size), |
|
self.config.mask_feature_prob, |
|
self.config.mask_feature_length, |
|
) |
|
mask_feature_indices = torch.from_numpy(mask_feature_indices).to(hidden_states.device) |
|
hidden_states[mask_feature_indices[:, None].expand(-1, sequence_length, -1)] = 0 |
|
encoder_outputs = self.encoder( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = encoder_outputs[0] |
|
|
|
if not return_dict: |
|
return (hidden_states,) + encoder_outputs[1:] |
|
|
|
return hidden_states |
|
|
|
|
|
|
|
|
|
|